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ABSTRACT

Data-intensive applications are becoming important in many
science and engineering fields, because of the high rates in
which data are being generated and the numerous opportu-
nities offered by the sheer amount of these data. Large-scale
datasets, however, are challenging to process using many of
the current machine learning algorithms due to their high
time and space complexities. In this paper, we propose
a novel approximation algorithm that enables kernel-based
machine learning algorithms to efficiently process very large-
scale datasets. While important in many applications, cur-
rent kernel-based algorithms suffer from a scalability prob-
lem as they require computing a kernel matrix which takes
O(N?) in time and space to compute and store. The pro-
posed algorithm yields substantial reduction in computation
and memory overhead required to compute the kernel ma-
trix, and it does not significantly impact the accuracy of
the results. In addition, the level of approximation can be
controlled to tradeoff some accuracy of the results with the
required computing resources. The algorithm is designed
such that it is independent of the subsequently used kernel-
based machine learning algorithm, and thus can be used with
many of them. To illustrate the effect of the approximation
algorithm, we developed a variant of the spectral clustering
algorithm on top of it. Furthermore, we present the design
of a MapReduce-based implementation of the proposed al-
gorithm. We have implemented this design and run it on
our own Hadoop cluster as well as on the Amazon Elastic
MapReduce service. Experimental results on synthetic and
real datasets demonstrate that significant time and memory
savings can be achieved using our algorithm.
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1. INTRODUCTION

The rapidly declining cost of sensing technologies has led
to proliferation of data in virtually all fields of science. Con-
sequently, the sizes of datasets used in all aspects of data-
driven decision making, inference, and information retrieval
tasks have exponentially grown. For example, datasets for
applications such as image clustering [35] and document re-
trieval [22] have substantially increased with the widespread
usage of web contents and the inexpensive cost of capturing
and sharing images. In many science and engineering ap-
plications, machine learning algorithms are frequently used
to process data and perform various tasks such as clustering
and classification. However, some of these algorithms do not
support the increasing volumes of data being available.

The goal of this paper is to enable an important class
of machine learning algorithms to efficiently process very
large-scale datasets. We achieve this goal using two tech-
niques: controlled approximation and elastic distribution of
computation. In the first technique, we carefully apply ap-
proximation schemes on the datasets, which substantially
reduce the time and space complexities of the considered
class of machine learning algorithms without significantly
impacting the accuracy of the produced results. The level
of approximation can be controlled to gauge the accuracy
of the results versus the required computing resources. In
the second technique, we design distributed versions of the
machine learning algorithms that can utilize the flexibility
offered by cloud computing platforms.

We consider the scalability of kernel-based machine learn-
ing algorithms, which have an increasing importance in many
fields, such as computer vision, bioinformatics, and natural
language processing. The performance of most kernel-based
machine learning algorithms significantly improves as the
size of training datasets increases. For example, in [26],
Munder and Gavrila show that the false negative rate of
their image-based human detection algorithm is reduced by
approximately 50% by only doubling the size of training
dataset for their Support Vector Machine (SVM) classifier,
while maintaining the same false alarm rate. Current kernel-
based algorithms, however, suffer from an inherent limita-
tion: they require computing a kernel matrix which stores
pair-wise similarity values among all data points. That
is, the kernel matrix has O(N?) complexity in both time
and space. This is clearly not feasible for large datasets



with millions, and soon billions, of data points. We ad-
dress this limitation by designing an approximation algo-
rithm for constructing the kernel matrix for large datasets,
which promises significant reduction in computational and
memory overhead required to compute the kernel matrix.
In particular, the main contributions of this paper are:

e We propose a novel approximation algorithm for com-
puting the kernel matrix for large-scale data sets. The
algorithm is designed such that it is independent of the
subsequently used machine learning algorithm. Thus,
it can be used to scale many kernel-based machine
learning algorithms.

e We design a variant of the spectral clustering algo-
rithm [9] on top of the proposed approximation algo-
rithm to show its effect on the performance and ac-
curacy. We theoretically analyze the expected reduc-
tion in computation time and memory requirements
resulted from our approximation algorithm.

e We present a distributed design of the proposed ap-
proximate spectral clustering algorithm in the MapRe-
duce programming model, and we implement and run
it on a Hadoop cluster in our lab as well as on the
Amazon Elastic MapReduce (EMR) service.

e We conduct extensive experimental study using vari-
ous synthetic and real datasets. The real dataset con-
tains more than three million documents that we col-
lected from Wikipedia. Our experimental results show
substantial (multiple orders of magnitude) saving in
the computing time and memory requirements can be
achieved by our algorithm when applied on large-scale
datasets, without significantly impacting the accuracy
of the results. In addition, we demonstrate how the
proposed algorithm can efficiently utilize variable com-
puting resources offered by the Amazon cloud plat-
form. Furthermore, we compare the proposed algo-
rithm against three recent algorithms in the literature
and show that it outperforms them.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the related work. Section 3 describes
the proposed approximation algorithm and its distributed
implementation. Section 4 presents the accuracy and com-
plexity analysis of the proposed algorithm. The experimen-
tal platform and results are presented in Section 5. The
paper is concluded in Section 6.

2. RELATED WORK

Massive data sets are common nowadays in many do-
mains. To process such large data sets, distributed and
cloud platforms are employed. For example, Matsunaga et
al. propose cloudBLAST [23], which is a cloud version of
the BLAST similarity search algorithm of DNA/RNA se-
quences, and Kang et al. [17] develop a distributed system
for mining massive graphs.

Several machine learning algorithms have also been im-
plemented in distributed manner. For example, the open-
source Apache Mahout library implements important ma-
chine learning algorithms such as K-Means, Singular Value
Decomposition and Hidden Markov Models using the MapRe-
duce model. Even with distributed implementations, some

machine learning algorithms may not be able to handle large-
scale data sets, because of their time and space complexities.
The important kernel-based machine learning algorithms fall
into this category, because they require O(N?) time and
space complexities to construct similarity matrices for N
data points. Our work addresses this problem by propos-
ing an approximation method to reduce the time and space
complexities of constructing kernel matrices and efficiently
processing the approximated matrices on cloud infrastruc-
tures with varying resources.

Previous works addressing the limitations of large-scale
kernel-based machine learning algorithms can be broadly
classified into two main categories: (1) methods that con-
struct low-rank approximations of the kernel matrix, and (2)
efficient implementations for computing the kernel matrix,
including implementations on modern computing platforms
such as Graphics Processing Units (GPUs).

Low-rank methods depend on the observation that the
eigen-spectrum of the kernel matrix rapidly decays, espe-
cially when the kernel function is a Radial Basis Function
(RBF) [33] [36]. Consider a kernel matrix K with eigenval-
ues \1 > A2 > -+ > Ay > 0 and corresponding eigenvec-
tors v;, K = Zi\’ AivivT. Since the eigen-spectrum decays
rapidly, i.e., most of the information is stored in the first
few eigenvectors, the kernel matrix can be approximated by
K =YY Nvivl, where M < N. Williams and Seeger [37]
use the Nystrom method [8] to compute the most signifi-
cant M eigenvalues and eigenvectors. The number of com-
puted eigenvectors is inversely proportional to the approx-
imation error. Nystrom-based methods have complexity of
O(M?N), where M is the number of computed eigenvectors.

Kernel-based methods have also been a target of efficient
implementations employing customized data structures and
modern computing platforms. For example, Ohmer et al.
[28] use GPUs to implement the classification step of the
SVM classifier, in which the kernel values are computed be-
tween the input test vector and the set of support vectors.
It should be noted, however, that the bottleneck of kernel
methods is usually encountered during the training phase,
rather than the testing phase, due to the large number of
training vectors and the dimensionality of the vector space.
In SVM classifiers, for example, the number of support vec-
tors is much smaller than the training vectors and the kernel
values are only computed against a small number of test vec-
tors.

Our proposed algorithm benefits from the advantages of
both categories, in which we exploit the rapidly decaying
eigen-spectrum of the kernel matrix and also develop a dis-
tributed computing implementation using MapReduce.

3. DISTRIBUTED APPROXIMATE
SPECTRAL CLUSTERING (DASC)

This section presents the proposed algorithm. We start
with an overview, followed by the details. Then, we present
the distributed implementation.

3.1 Overview

Kernel methods have gained significant attention in the
machine learning community and other applied fields for
more than a decade. Applications involving kernel meth-
ods include classification [5], dimensionality reduction [31]
and data clustering [27]. Kernel methods offer a modular



framework to do data analysis, in which the fundamental
is to compute the kernel matrix. The kernel matrix rep-
resents kernelized distances between pairs of data points.
The kernel matrix is sometimes referred to as the similar-
ity matrix and Gram matrix. We will use the terms kernel,
similarity, and Gram matrix interchangeably. The perfor-
mance of kernel methods improves as the number of input
points N increases [26]. However, since the cost of com-
puting the similarity matrix is O(N?) in both time and
space, it becomes computationally infeasible to handle large-
and web-scale datasets, such as Amazon’s customer statis-
tics dataset [20], (three million records) and Wikipedia Talk
network dataset [21] (two million instances) .

We propose a novel approximation algorithm for comput-
ing the similarity matrix. This approximation algorithm
can be used with any kernel-based machine learning algo-
rithm to make it scalable to large-scale datasets. We apply
our approximation algorithm to the spectral clustering al-
gorithm [27], which is based on eigen-decomposition of ker-
nel matrices. Spectral clustering performs well with non-
Gaussian clusters, and it does not suffer from the problem
of local optima [27]. Spectral clustering has been used in
various fields such as document clustering [39] and image
Segmentation [34].

There are four steps in the proposed distributed approxi-
mate spectral clustering (DASC) algorithm. First, the algo-
rithm creates compact signatures for all data points. This is
done using locality sensitive hashing. Second, points whose
signatures are similar to each other are grouped together.
Third, similarity values are computed for points in each
group to form portions of the similarity matrix. Fourth,
the Spectral Clustering algorithm is performed on the ap-
proximated similarity matrix. The first three steps make the
proposed approximation algorithm for kernel matrices. The
fourth step adds an example kernel-based machine learning
algorithm. Spectral clustering can be replaced by any other
kernel-based algorithm in the fourth step.

3.2 Details

The first step of the proposed DASC algorithm is to pre-
process the dataset using locality sensitive hashing (LSH).
LSH is a probabilistic dimension reduction technique [25].
The idea is to hash points such that the probability of col-
lision is much higher for close points than for those that
are far apart. Points whose hashing values collide with each
other fall into the same bucket.

We have studied various LSH families [12], including ran-
dom projection, stable distributions, and Min-Wise Inde-
pendent Permutations [4]. The hash functions we use to
generate the signatures belong to the family of random pro-
jection. The advantage of this family is that, after applying
hashing function once, we only need one bit to store the re-
sult, which saves memory. It has been shown that random
projection has the best performance in high-dimensional data
clustering [10]. Also, with random projection, we can com-
pare the generated signatures using hamming distances for
which efficient algorithms are available [2].

Given a set of data points X1, ..., Xn € R?, we use ran-
dom projection hashing [2] to generate M-bit binary signa-
ture for each data point. Each bit is generated as follows.
An arbitrary dimension of the input space is selected and
compared with a threshold. If the feature value along this
dimension is larger than the threshold, the bit is set so 1.

Otherwise, it is set to 0. Details on criterion for choosing
hashing dimensions and setting the threshold are discussed
in Section 4.2. The time complexity of random projection
hashing is O(M N).

In the second step of the proposed algorithm, vectors with
near-duplicate signatures are grouped into the same bucket.
Near-duplicate signatures mean that for two M-bit binary
numbers, there are at least P bits in common, where P < M.
If the total number of unique signatures generated is 7', the
complexity of this step is O(T?).

In the third step, for each bucket (representing unique
signature), we compute the similarity matrix for the vectors
that belong to this bucket only. Assuming we have T" buck-
ets, each of which has N; points, where 0 < ¢ < T — 1

T—1
and >, N; = N, the overall complexity of this step is
i=0

-1
ST O(N?). In the following, we use a Gaussian kernel to
i=0

compute the pairwise similarity S;,, between vectors X; and
X as shown in Equation (1)

X = X
202

Sim = exp( ), 1)
where o is kernel bandwidth, which controls how rapidly the
similarity S}, decays.

The final step in the proposed DASC algorithm is ap-
plying spectral clustering. Spectral clustering computes the
Laplacian matrix L and the eigenvectors of L. It then per-
forms K-means clustering on the eigenvectors matrix. For
the DASC algorithm, spectral clustering is applied on the
approximated similarity matrix, which is composed of the
smaller similarity matrices computed from different hashing
buckets. Thus, we compute the Laplacian matrix on each
similarity matrix S’ as shown in Equation (2)

1

r'=p sp, 2
where D' ""? is the inverse square root of D and is diagonal
matrix. For an N; x N; diagonal matrix, the complexity
of finding the inverse square root is O(N;). Moreover, the
complexity of multiplying an N; X N; diagonal matrix with
an N; x N; matrix is O(N?). Therefore, the complexity of

T-1
this step is O( > N?).
=0

We then find the first K; eigenvectors of L', Vi, Vi, .. ., Vliﬂ
and form the matrix X' = [V{'Vy-- Vi ] € RVi*5i by
stacking the eigenvectors in columns. The eigenvectors are
computed using QR decomposition [6], which takes O(K?)
steps. To reduce the computational complexity, we trans-
form L! into a K; X K; symmetric tridiagonal matrix Al
The complexity of the transformation is O(K; N;). QR de-

composition is then applied to A?, which is O(K;). There-
T-1

fore, the complexity of this step is O( > (K; N;)). The in-

=0
put vectors X; are normalized to have unit length such that
Yi; = Xi5/( ZXEJ) and Y; is treated as a point in R
j
and is clustered into K; clusters using K-means [13]. The

T-1

complexity of this step is O( > (K; Ny)).
i=0

Adding the time cost of all the above steps, the overall
time complexity for the DASC algorithm is given by:



Tpasc = O(M N) + O(T?) + i [20(N?) + 2 (K; Ny)]
- +2N.
(3)

3.3 MapReduce Implementation

The fundamental concept behind MapReduce is to break
up algorithm execution into two phases: map and reduce.
The inputs and outputs of each phase are defined by key-
value pairs. We divide the proposed DASC algorithm into
two MapReduce stages. The first MapReduce stage applies
LSH on the input data and produces vector signatures. In
the map phase of the this stage, the input vectors are loaded
as (index, inputVector) pairs, where index is the index of a
data point, and input Vector is a numerical array associated
with the point. The output key-value pair is (signature,
indez), where signature is a binary sequence, and indez is
the same as the input notation.

The input to the reducer of the first stage is the (sig-
nature, listof(index)) pair, where signature is a binary se-
quence, and listof(index) is a list of all vectors that share
the same signature indicating that these vectors are near-
duplicates. The reducer computes the sub-similarity matrix
following Equation (1). The pseudo-codes for the mapper
and reducer functions are shown in Algorithms 1 and 2, re-
spectively.

Algorithm 1: mapper(index, inputVector)

1 /*a mapper is fed with one inputVector at a time
2 String Sig ="";
3 fori=1;i< M;i++ do

4 Threshold = get_threshold(i) ;

5 Hyperplane = get_hyperplane(i) ;

6 if inputVector|Hyperplane] < Threshold then
7 | p=1;

8 else

9

| p=0;
10 | Convert p to String and add to the tail of Sig ;
11 emitPuair(Sig,index) ;

Algorithm 2: reducer (signature, ArrayList indexList )

1 /*Compute the sub similarity matrix */
2 Length = getLength(indexList) ;
3 for i = 1;i < Length;i + + do

4 for j = 1;j < Length;j + + do

5 if i # j then

6 ‘ subSimMatli, j| = simFunc(i, j) ;
7 else

8

| subSimMatli,j] =0 ;

9 Output_to_File(subSimMat) ;

In Algorithm 1, we note that the hyperplane and thresh-
old values are important factors in the hash function. The
threshold value controls at which point we separate the orig-
inal dataset apart, and the hyperplane value controls which

feature space to compare with the corresponding threshold.
We use the principle of k-dimensional tree (k-d tree) [18]
to set hyperplane and threshold values. The k-d tree is a
binary tree in which every node is a k-dimensional point.
Every non-leaf node can be thought of as implicitly gener-
ating a splitting hyperplane that divides the space into two
parts, known as subspaces. Points to the left of this hyper-
plane are represented by the left subtree of that node and
points right of the hyperplane are represented by the right
subtree. The hyperplane direction is chosen in the following
way: every node in the tree is associated with one of the
k-dimensions, with the hyperplane perpendicular to that di-
mension’s axis. For example, if for a particular split, the “x”
axis is chosen, all points in the subtree with a smaller “x”
value than the node will appear in the left subtree and all
points with larger “x” value will be in the right subtree. In
such a case, the hyperplane would be set by the x-value of
the point, and its normal would be the unit x-axis.

To determine the hyperplane array, we look at each di-
mension of the dataset, and calculate the numerical span for
all dimensions (denoted as spanli],i € [0,d)). The numer-
ical span is defined as the difference of the largest and the
smallest values in this dimension. We then rank the dimen-
sions according to their numerical spans. The possibility of
one hyperplane[i] being chosen by the hash function is:

d—1
prob = spanli]/ Z spanli], (4)
i=0
which ensures that dimensions with large span have more
chances to be selected. For each dimension space Dim|i],
the associated threshold is determined as follows: between
the minimum (denoted as min[i]) and maximum (denoted as
maz[i]) in Dim[i], we create 20 bins (denoted as bin[j],j €
[0,19]), bin[j] will count the number of points whose ith di-
mension fall into the range [min[i]+j x spanl[i]/20, min[i]+
(j + 1) x spanli]/20]. We then find the minimum in array
bin (denoted as s), the threshold associated with Dim/[i] is
set to:
Diml[i] = min[i] + s x span][i]/20. (5)
Approximation error can occur if two relatively close points
in the original input space are hashed into two different
buckets. If a full similarity matrix is computed, the simi-
larity between the two vectors will be significant. However,
due to our approximation scheme, this similarity will be ze-
ros. In order to reduce this approximation error, buckets
represented by signatures that share no less than P bits.
We perform a pair-wise comparison between the M unique
signatures and merge the vectors that belong to buckets with
signatures no less P similar bits are combined. This step is
performed before applying the reducer.
The process of comparing two M-bit signatures A and B
is optimized for performance using the bit manipulation:

ANS = (A® B)(A® B — 1), (6)

where if AN S is 0, then A and B have only 1 bit in difference,
thus they will be merged together. Otherwise, A and B are
not merged. The complexity of this operation is O(1).

After computing the sub-similarity matrices based on the
LSH signatures and combining similar buckets, we use the
standard MapReduce implementation of spectral clustering
available in the Mahout library [29].



4. ANALYSISAND COMPLEXITY

In this section, we first analyze the time and space com-
plexities of the proposed DASC algorithm and show its scal-
ability. Then, we analyze the accuracy expected from the
proposed approximation method for the kernel matrix.

4.1 Complexity Analysis

The time complexity for computing the full similarity ma-
trix is O(N?). For the approximated similarity matrix, as-
sume that we have B buckets, and there are IN; number of
points in bucket i. The N; points in bucket B; form Kj;

B-1
clusters, where 0 < i < B—1, and ), N; = N. Spectral

i=0
clustering is performed on each bucket. Therefore, the time
reduction ratio is:

B-1
MN+B*+2N+ > [2N? 4 2(K; N;)] M
i=0

o=

2N2+2(KN)+2N
To gain insights on the above equation, let us assume that

all buckets contain equal number of points, that is N; = %
where 0 < i < B — 1. Equation (7) can be rewritten as:

B—1
MN+B*+2N+ > [2N} +2(K; N)]
i=0

o=

IN2+2KN+2N
MN+B>+2N+B [2(%)?+2(% X))
2N24+2KN+2N (8)
2
M+5-+2-2 1

2(0+N+K) B
1

§7

%

since the first item approaches zero as N increases. We
note that the above time complexity is an upper bound on
the time reduction achieved because of the approximation
of the similarity matrix. In the worst case, all points will
hash to the same bucket. This, however, is not typical for
practical data, because we use multiple hash functions and
we apply each function on a different dimension. Further,
the dimensions used in the hashing are the ones that have
the largest span, i.e., dimensions in which data points are
as spread out as possible. We also note that Equation (7)
and the proposed DASC algorithm itself does not assume
or require uniform distribution of data points over buckets.
The uniform distribution in Equation (8) is only used to
illustrate the upper bound on the potential time reduction.

The space complexity for computing the full matrix is
O(N?). Computing the similarity matrices for each bucket

B-1
individually, the space complexity is reduced to Y. N?.
i=0

7=

Therefore, the space usage reduction ratio is given as:

B—1 5
N*
=0 ©)
N2

Again for the upper bound, assume that all buckets con-
tain equal number of points, N; = % where 0 <¢ < B —1.

Equation (9) can be rewritten as:

B—-1 5
N;
2N pay

1 (10)
-~ N2 N2 B’

It is important to note that, the memory needed is dis-
tributed across the number of machines running the algo-
rithm, which improves the scalability of the DASC algo-
rithm.

To shed some insights on the above analysis and illustrate
the scalability of the DASC algorithm, we numerically ana-
lyze its time and space complexities for datasets of different
sizes. The processing time of DASC can be written as (in
seconds):

B—-1

MN+B*>+2N+ Y [2N} +2(K: N))]
Time = f3 =0

C
MN+B>+2N+B [2(%)?+2(£ %) 1)
C
log BN + BZ+2N + 2 N2434 N (log N—9)
= 6 C Y )
where M = logB, K = 17(log N — 9), C is the number
of machines, and S is a constant representing the average
execution time for machine operations. The exact value for

[ depends on various issues including the machine architec-
ture, memory, and I/O speed.

=p

Similarly, for memory consumption, assuming single-precision

floating point operations, we have (in bytes):
N o N2
5) =45 (12)
We plot Equations (11) and (12) in Figure 1 for datasets
ranging from 1M to 512M points. To be able to plot the
curves, we chose reasonable value for § = 50us [15]. We
also assume a cluster of C' = 1,024 nodes. We also plot the
standard spectral clustering (SC) algorithm for comparison.
Figure 1 shows that DASC is highly scalable to large-scale
datasets in both time and space complexities. As the size of
the dataset doubles, the increases in both processing time
and memory footprint are sub-quadratic. Notice that the
points in the x-axis are growing exponentially.

Memory =4 B (

4.2 Accuracy Analysis

Given an N X d dataset, the dependence of final clus-
tering on any arbitrary dimension ¢ is proportional to the
dispersion of data along this dimension. If the data along
dimension i is highly dispersed, then this dimension may sig-
nificantly contribute to the structure of the data, and visa
versa. The probability of selecting an arbitrary dimension
¢ for hashing is given by Equation (4). Therefore, since we
need to use M < d hash functions in the signature gener-
ation stage, we order the importance of the d dimensions
based on the numerical span of the data along each dimen-
sion and pick the dimensions with highest M spans for ap-
plying the hash function. The hash function builds upon the
fact that, along an arbitrary dimension, if all data points
fall within a small span, the probability of mis-clustering
increases.

Along dimension ¢, the hash function chooses a threshold
7 such that if the value of the point along ¢ is below 7,
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Figure 1: Scalability of the DASC algorithm to large-scale datasets.

a hash value of 0 is assigned. Otherwise, a hash value of
1 is assigned. The value of the threshold 7 is chosen by
calculating a histogram of the data along 7 and setting 7 to
the lower edge of the histogram bin of the smallest count,
which is given by Equation (5).

In a dataset of size N with K clusters, there are, on av-
erage, N/K points in each cluster. The dimensionality in
each cluster is d. Given any two arbitrary data points that
significantly differ in r dimensions, where r < d, the colli-
sion probability of these two points, i.e., the two points have
duplicate binary signatures and therefore falling within the
same bucket, is given by:

(13)

where (d —r)/d is the probability that the dimension where
such two points have similar value is checked. Furthermore,
for a set of points, the collision probability is given by:

d—r N
Py = PlN/K _ (TT)I\IN/K. (14)

To study the effect of the number of hash functions M on
the tradeoff between the accuracy of clustering and the par-
allelization of the algorithm, we use a number of Wikipedia
datasets as shown in Table 1. We use line fitting to empiri-
cally relate the number of clusters to the size of each of the
data set. Equation (15) shows the best fitting parameters.

K =17 (log, N — 9). (15)

Every point in the Wikipedia dataset is a document com-
prised of d = 11 terms. We set r = 5 in order to ensure that
the majority of dimensions, d — r, are significantly similar.
Therefore, the total number of terms in the dataset is

t:117r+%r. (16)

The dimensionality d is given by

d=tK=K (11—-r)+ Nr. (17)

Dataset size | Number of categories
1024 17
2048 31
4096 61
8192 96
16384 201
32768 330
65536 587
131072 1225
262144 2825
524288 5535
1048576 14237
2097152 42493
Table 1: Clustering information of Wikipedia
dataset.

Equation (14) can now be rewritten as

Py = (GE)M K (18)
— (1 o 17(log21\’5W)1\1N/17(10g2N 9). (19)

Figure 2 illustrates the relationship between the collision
probability and the number of hash functions used as given
by Equation (18), for datasets with different sizes chosen
from the Wikipedia dataset. It can be observed that, as
the number of hash functions increases, the probability of
a group of adjacent points being put into a cluster slowly
(sub-linearly) decreases. This means that the incorrectly
clustered instances in the dataset increases. On the other
hand, increasing the number of hash functions increases the
number of instances of Spectral Clustering to run in parallel,
improving the parallelization of the algorithm. Moreover,
when we use the same M value to do the partitioning, as
the size of the dataset increases, the collision probability
decreases. Therefore, it can be seen that, through the tuning
of the parameter M, we can control the tradeoff between
the accuracy of the clustering algorithm and the degree of
parallelization.

5. EXPERIMENTAL EVALUATION

In this section, we rigorously evaluate the performance
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Parameter Value

Hadoop jobtracker heapsize 768 MB

Hadoop namenode heapsize 256 MB

Hadoop tasktracker heapsize 512 MB

Hadoop datanode heapsize 256 MB
Maximum map tasks in tasktracker 4
Maximum reduce tasks in tasktracker 2
Data replication ratio in DFS 3

Table 2: Setup of the Elastic MapReduce cluster.

of the proposed algorithm and compare it against others.
We start by describing our platform and datasets used in
the following two subsections. Then, we explain and justify
the performance metrics used. This is followed by a brief
description of the algorithms implemented and compared
against. Finally, the results for accuracy, complexity, and
scalability are presented in three subsections.

5.1 Experimental Platform

We have implemented the proposed algorithm and few
others in the literature in the Hadoop open-source imple-
mentation of the MapReduce framework. We ran our imple-
mentation on a local cluster as well as on the Amazon Elastic
MapReduce (EMR) service. Our local cluster is composed of
five machines, each is equipped with Intel Core2 Duo Pro-
cessor E6550 (4M Cache, 2.33 GHz, 1333 MHz FSB) and
1 GB DRAM. The cluster runs Hadoop version 0.20.2 on
top of Ubuntu Linux 2.6.27-14, and using Java JDK version
1.6.0. One machine in the cluster serves as the master (job
tracker) and the others are slaves (task trackers).

For scalability and elasticity experiments, we use the Ama-
zon EMR service with variable number of machines: 16, 32,
and 64. Each machine has 1.7 GB memory, 350 GB of disk
storage and runs Hadoop 0.20.2 on top of Debian Linux. We
list the important parameters and their values in Table 2.
EMR works in conjunction with Amazon EC2 (Elastic Com-
pute Cloud) to create a Hadoop cluster, and with Amazon
S3 (Simple Storage Service) to store scripts, input data, log
files, and output results. To run our experiments, we first
upload to Amazon S3 the input data, as well as the mapper

and reducer executables that process the data. Then, we
send a request to EMR to start a job flow. A job flow is a
collection of processing steps that EMR runs on a specified
dataset using a set of Amazon EC2 instances. Our job flow
is comprised of several steps.

In the first step, we partition the dataset into buckets us-
ing locality sensitive hashing. FEvery bucket is a file stored in
S3 containing points in the corresponding bucket. In the sec-
ond step, Spectral Clustering is applied on individual buck-
ets. The final step produces the results, stores them in S3
and terminates the job flow. We note that the partitioning
step allows our DASC algorithm to process very large scale
data sets, because the data partitions (or splits) are incre-
mentally processed, split by split, based on the number of
available mappers (and physical machines).

Intermediate results of hashing (buckets) are stored on
S3 and then incrementally processed by DASC to produce
final results. Thus, DASC can handle huge datasets. For
very skewed data distributions, we can employ a different
hashing function in LSH. There are data-dependent hashing
functions (e.g., spectral hashing functions), which will yield
balanced partitioning. Their inclusion in DASC is straight-
forward. Data locality is achieved through the first LSH
step, which tries to group near-by points into one bucket.
Distributed datasets can be thought of huge datasets with
splits stored on different machines, where the output hashes
represents the keys that are used to exchange datapoints
between different nodes.

5.2 Datasets. Synthetic and Real

We use two datasets in our experiments: synthetic and
real (from Wikipedia). We create synthetic datasets with
controlled parameters, e.g., number of dimensions, number
of data points, and range of values for data points. The size
of the synthetic datasets ranges from 1024 to 4 million data
points. Each data point is 64-dimension vector, where each
dimension takes a real value chosen from the period [0-1].
We use the range [0-1] because dataset normalization is a
standard preprocessing step in data mining applications.

Wikipedia has millions of articles, categorized into many
groups. We used a dataset of 3,550,567 Wikipedia docu-
ments in our experiments. These documents are obtained
and cleaned as follows. Note that we refer to a web page
as document, and a word that appears in the corpus as
a term. We developed a crawler in Python. The crawler
started crawling the indexing page: http://en.wikipedia.
org/wiki/Portal:Contents/Categories, which lists the cat-
egories and their links. Each category has sub-categories,
where each sub-category can recursively have sub-categories.
For these sub-category links, Wikipedia differentiates them
into two genres, both are encoded in the HTML files. The
first is identified with CategoryTreeBullet, meaning that this
link contains its own sub-categories. The second is identi-
fied with CategoryTreeEmptyBullet, meaning that this sub-
category only contains leaf nodes (HTML files). Our crawler
obtained the tree structure of categories and downloaded the
content of leaf nodes. At the ended of the crawling process,
it downloaded 3,550,567 documents, forming 579,144 cate-
gories.

We then processed HTML files as follows: (i) removed all
HTML tags keeping only the raw text, (ii) converted charac-
ters to lower case, (iii) removed punctuation, (iv) removed
stop words, and (v) stemmed all terms. We used Apache
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Figure 3: Accuracy of different algorithms using the
Wikipedia dataset.

Lucene [14] perform most of these operations. Lucene is a
text search engine library. The stop-word list we used is con-
catenated from several lists to capture the majority of the
stop words. Stemming is the process of reducing inflected
(or derived) words to their base or root forms. We used the
Porter stemming algorithm [30] in Lucene.

We encountered a problem during processing HTML files:
The number of terms in the dataset is huge. Terms in a doc-
ument represent features (or dimensions) of that document,
which will make the clustering process extremely computa-
tionally expensive. To address this problem, we used only
the summary of each document and the important terms in
the summary. To rank terms based on their importance, we
computed the tf_idf (term frequency, inverse document fre-
quency) value of each term, which is computed for a term ¢
by dividing the total number of documents by the number
of documents containing the term ¢. After ranking all terms
based on their tf idf values, we used the first F' terms. We
conducted several experiments to choose a good value for
F. We randomly chose 1,084 document from the dataset.
These documents contain 11,102 different terms. We ran
Spectral Clustering on the datasets generated using F' from
6 to 16 and compared the clustering accuracy. The cluster-
ing accuracy is the ratio of correctly clustered documents
to the total number of documents. Our results (figure not
shown) indicate that increasing F' beyond 11 did not pro-
vide any significant improvement in the clustering accuracy.
Therefore, we use I' = 11 in our experiments.

We note that using only some terms and only from the
document summaries (not the whole texts) makes the clus-
tering task more challenging for our algorithm, which we
compare its results against the ground-truth categorization
provided by Wikipedia.

5.3 Performance Metrics

We use several performance metrics to assess the proposed
algorithm from different angles. We measure the computa-
tional and space requirements of different algorithms. In ad-
dition, we assess the clustering accuracy using various met-
rics. The first metric is comparing the clustering results pro-
duced by our algorithm against the ground truth, which is

the case for the Wikipedia dataset. In this case, the cluster-
ing accuracy is measured as the ratio of correctly clustered
number of points to the total number of points. For many
datasets in practice the ground truth for clustering is not
known. For such cases, we use three metrics: Davies-Bouldin
index (DBI), average squared error (ASE), and Frobenius
norm (Fnorm). DBI and ASE assess the clustering quality
produced by a given clustering algorithm, while the Fnorm
provides an estimate on how close the original and approxi-
mated Gram matrices are.

DBI [7] is a function of the ratio of the sum of within-
cluster scatter to between-cluster separation. It uses both
the clusters and their sample means. It is calculated by:

1 < o +0j

DBI =7 — e ey (20)
where C' is the number of clusters, ¢, is the centroid of clus-
ter z, o, is the average distance of all elements in cluster
x to centroid ¢, and d(c;, ¢;) is the distance between cen-
troids ¢; and ¢;. The clustering algorithm that produces the
smallest index is considered the best algorithm based on this
criterion. DBI has been shown to be a robust strategy for
the prediction of optimal clustering partitions [7].

ASE [16] serves as a clustering criterion for many classic
clustering techniques. For example, it is used in [11] for
validation purposes. The squared distance e (where 1 <
k < C) for each cluster k is the sum of the squared Euclidean
distances between each point in k and its centroid, and the
average squared error for the entire dataset is expressed by:

Np—1

ASE =~ ;ei == ;( 3 dx, )P (@21

3=0
where N is the size of the dataset, Ny is the number of points
in cluster k.

Fnorm is one of the matrix norms [24], which is also called

the Euclidean norm. The Fnorm of an M x N matrix A is
defined as:

DD lail>. (22)

i=1 j=1

Fnorm =

To illustrate the intuition behind this metric, consider an
M x N matrix A. By singular value decomposition, A can
be decomposed into the product of three matrices as follows:

A = uxv”? (23)

X 0
U

0 0
where U and V' are two unitary matrices and Xy is a k X k
diagonal matrix containing the k ordered positive definite
singular values o1 > 02 --- > or > 0. The variable k is the
rank of A and represents the number of linearly indepen-

dent columns in it. The Frobenius norm is invariant under
unitary transformations, therefore, we have:

VvH

Fnorm =

> o3 (24)

m=1

According to Eq. (24), the larger the ratio of the Fnorm
of the approximated matrix to the Fnorm of the original
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Figure 4: Accuracy of different algorithms using the synthetic dataset.

matrix, the closer the sum of singular values in the approxi-
mated matrix is to that of the original one. Thus, larger
Fnorm ratios imply matrices with similar characteristics.
Fnorm is used in [40] to develop a new affinity matrix nor-
malization scheme in Spectral Clustering. Anagnostopou-
los et al. [1] propose an approximation algorithm for co-
clustering problem and use Fnorm for evaluation. Yang and
Yang [38] compare their proposed distance against Fnorm
in two-dimensional principal component analysis.

5.4 Algorithms Implemented and Compared
Against

We have implemented the proposed DASC algorithm, and
compared its performance against the three closest other al-
gorithms: basic Spectral Clustering method (SC), Parallel
Spectral Clustering (PSC) [3], and Spectral Clustering us-
ing the Nystrom extension (NYST) [32]. We provide brief
description on the implementation and configuration below;
more details can be found in [12].

We implemented DASC by modifying the Mahout library
[29]. We set the number of buckets in the hashing step to
M = |(log N)/2] —1, where N is the dataset size. We set P,
which is the minimum number of identical bits in two binary
signatures needed to merge their buckets together, to M —1.
This enables efficient, O(1), comparison operation between
signatures. It also increases the degree of parallelization as
fewer buckets will be merged.

For SC, we used the basic distributed Spectral Cluster-
ing implementation in Mahout. For PSC, we used the C+-+
implementation by Chen [3], which uses the PARPACK li-
brary [19] as the underlying eigenvalue decomposition pack-
age. The parallelization is based on MPI. For NYST, we
used the existing Matlab implementation by Shi [32].

5.5 Resultsfor Clustering Accuracy

We present the accuracy results in this section. We note
that some algorithms we compare against did not scale to
support large-scale datasets. Hence, in the figures, some
curves do not cover the whole range of the x-axis.

We start by presenting the accuracy results for the Wikipedia

dataset in Figure 3. In this figure, we vary the number of
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Figure 5: Comparison between approximated and
original matrices using Frobenius norm.

randomly selected documents from the dataset, and we plot
the ratio of correctly clustered points (documents) to the
total number of points. The figure first shows that the three
variants of spectral clustering (SC, PSC, and DASC) pro-
duce high accuracy: always more than 90%. Recall that
these clustering algorithms use only the summaries of doc-
uments in the clustering process and the accuracy is com-
puted relative to the pre-defined categorization of topics in
Wikipedia. The figure also shows that the proposed DASC
algorithm consistently produces better results than the re-
sults produced by the PSC algorithm, and its results are
very close to the results produced by the basic SC algo-
rithm. This means that the proposed approximation method
does not negatively affect the clustering accuracy, while it
achieves significant savings as will be shown later.

Next, we show the accuracy results in terms of DBI and
ASE for synthetic data in Figure 4. We vary the number
of points from 1K to 4M and compute the DBI and ASE
values for the clusters produced by four algorithms: DASC,



PSC, SC, and NYST. Figure 4(a) shows that the DBI val-
ues achieved by DASC are very close to those produced by
SC. When checking the DASC curve alone, the DBI values,
although go through some slight ups and downs, in gen-
eral, they stay in the range between 1 to 1.3 and are always
close to the SC’s curve. Figure 4(b) shows that DASC out-
performs the PSC and NYST and yields close performance
to that of SC, in terms of ASE, which measures how close
the points in the clusters are to their respective centroids.
Small ASE values indicate better clustering result. The re-
sults indicate that PSC and NYST are about 30% and 40%,
respectively, apart from SC. Moreover, when the dataset
grows, the PSC performance tends to deteriorate, as the av-
erage distance value grows slightly, which is unlike DASC
that produces consistent results.

Finally, we present the results of the low-level Fnorm met-
ric which captures the similarity between the approximated
and original Gram matrices. We consider various number of
data points: from 4K to 512K. Note that we could not use
more than 512K points because we need to compare against
the original Gram matrix which requires memory propor-
tional to the square of the number points. We plot the
ratio of the Fnorm value computed from the approximated
matrix to the Fnorm value computed from the original full
Gram matrix in Figure 5. We do this for different number
of buckets used in the hashing step; we change the num-
ber of buckets from 4 to 4K. Note that larger numbers of
buckets allow for higher degrees of parallelization and are
desirable. However, larger numbers of buckets imply more
partitioning of the dataset which can affect the clustering
accuracy. The results shown in Figure 5 indicate that the
approximated matrix does not lose significant information
compared to the original matrix. The figure also shows that
for the same dataset, increasing the number of buckets tends
to decrease the Fnorm ratio, which means that the approx-
imated matrix has less resemblance to the original matrix.
In addition, for larger datasets, more number of buckets can
be used before the Fnorm ratio starts to drop.

5.6 Resultsfor Timeand Space Complexities

We measure and compare the processing time and memory
requirements for three different algorithms: DASC, PSC,
and SC. SC is implemented in the Mahout library in Java
using the MapReduce framework. PSC is implemented in
C++ using MPI. DASC is implemented in Java using the
MapReduce framework. We realize that different implemen-
tation languages and parallelization models can impact the
running times. However, the orders of magnitudes perfor-
mance gains observed in our experiments (as shown shortly)
clearly overshadow such small differences. We also note
that the NYST algorithm is implemented in Matlab and
we could not run on the cloud. This experiment is con-
ducted on the five-node cluster and for the Wikipedia and
synthetic datasets. We show the results for the Wikipedia
dataset in Figure 6; other results are similar [12]. As shown
in Figure 6(a), DASC considerably improves the processing
time. For example, for a dataset of size 2'® points, DASC
runs more than an order of magnitude faster than PSC. For
datasets larger than 2'®, PSC could not even terminate be-
cause of the large processing time and memory requirements.
The basic SC algorithm in Mahout did not scale to datasets
larger than 2'° and was orders of magnitudes slower than
DASC.

Metric 64 nodes 32 nodes 16 nodes
Accuracy 95.6% 96.4% 96.6%
Memory | 29444 KB | 29412 KB | 28919 KB

Time 20.3 hrs 40.75 hrs 78.85 hrs

Table 3: Results for running DASC on the Amazon
cloud with different nodes.

The most important advantage of our proposed DASC
algorithm is the substantial memory saving, which is con-
firmed by Figure 6(b). The numbers shown in the figure are
for total memory needed to store the Gram matrix. The fig-
ure shows that DASC achieves several orders of magnitude
of memory saving compared to the basic SC implemented
in Mahout. The figure also shows that although PSC uses
sparse matrix representation, DASC requires substantially
less memory than it. For example, for a dataset of size 2%,
there is a factor of more than 25 reduction in memory usage
when comparing DASC versus PSC. More importantly, the
memory usage curve for DASC is much flatter than SC and
PSC curves. This means that DASC provides much better
scalability to process very-large datasets than the other two
algorithms.

5.7 Elasticity and Scalability

One of the main advantages of using cloud platforms is
elasticity, which enables cloud customers to easily request
and utilize different amounts of computing resources based
on the actual demand. In this section, we demonstrate that
the proposed DASC algorithm, and hence the approximation
method in general, can benefit from the elasticity offered by
cloud platforms.

We run our DASC algorithm on the Wikipedia dataset
on Amazon cloud and we vary the number of computing
nodes from 16 to 64. We measure the accuracy, running
time, and memory usage in each case. We summarize the
results in Table 3. The results first demonstrate the scalabil-
ity of the proposed DASC algorithm, since the running time
reduces approximately linearly with increasing the number
of nodes, while the memory usage and clustering accuracy
stay roughly the same. This scalability is achieved mainly
by the proposed preprocessing step, which partitions a given
large dataset into independent and non overlapping parti-
tions (hashing buckets). These parts can be allocated to
independent computing nodes for further processing. This
enables the utilization of various number of computing nodes
once they become available, which results in faster process-
ing of the dataset. On the other hand, if the number of
computing nodes decreases, the DASC algorithm allocates
more partitions per node, yielding correct results but with
longer execution time. Therefore, DASC can efficiently and
dynamically utilize different number of computing nodes.

6. CONCLUSIONS

We proposed new algorithms to support large-scale data-
intensive applications that employ kernel-based machine learn-
ing algorithms. We presented an approximation algorithm
for computing the kernel matrix needed by various kernel-
based machine learning algorithms. The proposed algorithm
uses locality sensitive hashing to reduce the number of pair-
wise kernel computations. The algorithm is general and can
be used by many kernel-based machine learning algorithms.
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Figure 6: Processing time and memory requirements for different algorithms.

We designed a distributed approximate spectral clustering
(DASC) algorithm based on the approximation algorithm.
We showed that DASC can offer a factor of up to O(B)
reduction in running time and memory usage compared to
the spectral clustering algorithm that uses the full kernel
matrix. B is the number of buckets used by the locality
sensitive hashing step. B depends on the number of bits
in the binary signature generated for each data point by
the hashing functions. For large data sets, more bits in the
signatures are needed, and thus more buckets. This means
that the reduction factor achieved by our algorithm increases
as the size of the dataset grows, which is an important and
desirable property of our algorithm that enables it to scale
to massive data sets.

We implemented DASC in the MapReduce framework,
and ran it on a Hadoop cluster in our lab as well as on
the Amazon Elastic MapReduce (EMR) service. We used
the DASC algorithm to cluster various synthetic and real
datasets. The real dataset contains more than three million
documents from Wikipedia. We compared the clustering ac-
curacy produced by the DASC algorithm versus the ground
truth document categorization provided by Wikipedia. Our
results showed that the DASC algorithm achieves high clus-
tering accuracy of more than 90%, and its accuracy is very
close to the regular spectral clustering algorithm that uses
the full kernel matrix. Whereas the running time and mem-
ory usage of the DASC algorithm is several orders of magni-
tudes smaller than the regular spectral clustering algorithm.
We also compared the DASC algorithm versus other algo-
rithms in the literature and showed that it outperforms them
in clustering accuracy, running time, and memory require-
ments.
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