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Figure 1: The Eye sequence and its magnification with (from left): the Lagrangian approach [7], the Eulerian approach [14] and DVMAG

(ours). The Region of Interest is the dashed yellow region (left). For each magnification we show the spatio-temporal slice for the green

line (left). For easier comparison all slices are temporally stabilized. This sequence shows an eye moving along the horizontal direction.

Processing the sequence with DVMAG shows that the Iris wobbles as the eye moves (see DVMAG, spatio-temporal slice). Such wobbling

is too small to be observed in the original sequence (left). The global motion of the eye causes significant blurring artifacts when processed

with the Eulerian approach. The Lagrangian approach sensitivity to motion errors generates noisy magnification (see dashed blue).

Abstract

Video magnification reveals subtle variations that would

be otherwise invisible to the naked eye. Current techniques

require all motion in the video to be very small, which is

unfortunately not always the case. Tiny yet meaningful mo-

tions are often combined with larger motions, such as the

small vibrations of a gate as it rotates, or the microsaccades

in a moving eye. We present a layer-based video magnifica-

tion approach that can amplify small motions within large

ones. An examined region/layer is temporally aligned and

subtle variations are magnified. Matting is used to magnify

only region of interest while maintaining integrity of nearby

sites. Results show handling larger motions, larger ampli-

fication factors and significant reduction in artifacts over

state of the art.

1. Introduction

The world is full of small temporal variations that are

hard to see with naked eyes. Variations in skin color occur

as blood circulates [11], structures sway imperceptibly in

the wind [11], and human heads wobble with each heart beat

[2]. While usually too small to notice, such variations can
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be magnified computationally to reveal a fascinating and

meaningful world of small motions [7, 2, 17, 11, 14, 15].

Current video magnification approaches assume that the ob-

jects of interest have very small motion. However, many

interesting deformations occur within or because of larger

motion. For example, our skin deforms subtly when we

make large body motion. A toll gate that closes exhibits

tiny vibrations in addition to the large rotational motion.

And microsaccades are often combined with large-scale eye

movements (Fig. 1). Furthermore, videos or objects might

be shot by handheld cameras and may not be perfectly still,

and a standard video magnification technique will amplify

handshake in addition to the motion of interest. When ap-

plied to videos that contain large motions, current magnifi-

cation techniques result in large artifacts such as haloes or

ripples, and the small motion remains hard to see because it

is overshadowed by the then magnified large motion and its

artifacts (see Fig. 1).

In the special case of camera motion, it might be possi-

ble to apply video stabilization as a preprocess to remove

the undesirable large handshake, e.g. [8, 3, 9, 10], before

magnification. However, this approach does not work for

general object motion, and even in the case of camera shake,

one has to be careful because any error in video stabiliza-

tion will be amplified by the video magnification step. This

problem is especially challenging at the boundary between
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a moving object, such as an arm, and its background, where

multiple motions are present: the large motion, the sub-

tle deformation to be amplified, and the background mo-

tion. Current video magnification such as the linear Eule-

rian [17], phase-based [14], and Riesz [15] algorithms as-

sume that there is a locally single motion. This generates

a background dragging effect around object boundaries. In

addition the Lagrangian approach [7] is sensitive to motion

errors. This generates noisy magnifications.

This paper presents a video magnification technique ca-

pable of handling small motions within large ones. Our

technique is called DVMAG short for Dynamic Video Mo-

tion Magnification. Users select a region of interest (ROI) to

magnify. We discount the global motion of the ROI through

regularized parametric motion models. We handle bound-

aries between the moving object and the background us-

ing layer decomposition and matting. We show that, by ap-

plying Eulerian video magnification to both the foreground

layer and its matte, we can dramatically reduce artifacts.

Further, we handle potential dis-occlusion due to the ampli-

fied motion using texture synthesis [5, 7].

Aspects of novelty in this paper include: 1) Handling

large motions in magnification through stabilization, 2)

The use of mattes in magnification to maintain integrity of

nearby sites, and 3) The use of texture synthesis in Eulerian

magnification to fill-in revealed holes.

2. State of the Art

Video magnification is the task of amplifying and visu-

alizing subtle variations in image sequences. Current tech-

niques are classified into two main categories: Lagrangian

[7, 2] and Eulerian [17, 14, 11]. In Lagrangian approaches

motions are estimated explicitly. Here motions are the sub-

tle variations to be magnified. The Eulerian approaches, on

the other hand, do not estimate motions explicitly. Instead,

they estimate subtle variations by calculating non-motion

compensated frame differences. Lagrangian approaches can

only magnify motion changes [7, 2], while Eulerian can

magnify motion [14, 11] as well as color changes [17].

Liu et al. [7] presented one of the first video magnifica-

tion techniques. Feature point trajectories are extracted and

segmented into two sets, stationary and moving. An affine

motion model is fitted on the stationary points which regis-

ters the examined sequence on a reference frame. Motions

are re-estimated, scaled and added back to the registered se-

quence. This generates the magnified output.

Few techniques for Eulerian video magnification have

been presented in [17, 14, 15]. In [17], an input sequence

is first decomposed into a multiscale stack (Laplacian or

Gaussian). Subtle variations are temporally filtered. When

scaled and added back to the input sequence, a magnified

output is rendered. Impressive results are generated [17],

however only small motions and amplification factors can

be handled. Larger values generate artifacts in form of

clipping which can kill useful information in the magnified

video (see Fig. 6, Eulerian). The second Eulerian magnifi-

cation technique is based on the observation that phase vari-

ations over time correspond to motion [14, 15]. An input

video is decomposed into a multi-scale, multi-orientation

stack [13]. The amplitude and phase of each band are sep-

arated, and the phase is temporally filtered at each location,

orientation and scale. This estimates the subtle temporal

changes in an image sequence. The corresponding phase

changes are magnified and added back to the input video.

Reconstructing the space-time representation renders the

magnified video. The phase-based technique [14, 15] has

better noise handling characteristics than the linear tech-

nique [17]. However its main drawback is still the inabil-

ity to handle large motions. Such motions when processed

generate significant blurring artifacts (see Fig. 1, Eulerian).

Our work is related to Bai et al. selective deanimation

[1]. A user selects a region to be stabilized. However unnat-

ural motions could be introduced to previously motion-less

regions. A graph-cut based optimization is used to compos-

ite the immobilized region with still frames. The stabiliza-

tion stage is related to ours. However we address a com-

pletely different problem, video magnification, with differ-

ent form of artifacts that require different treatment.

3. DVMAG: Dynamic Video Magnification

We present a video magnification technique to amplify

small motions within large ones. Our technique (Fig. 2) has

two main components: 1. Warping to discount large motion

and 2. Layer-based Magnification. The Warping stage seeks

to remove large motion while preserving small ones, and

without introducing artifact that could be magnified. For

this, we use either KLT tracking [12] or Optical Flow [6]

as well as regularized low-order parametric models for the

large-scale motion. Our layer-based magnification is based

on decomposing an image into a foreground, background

through an alpha matte. We magnify each layer and gener-

ate a magnified sequence through matte inversion. We use

texture synthesis to fill in image holes revealed by the mag-

nified motion. Finally, we de-warp the magnified sequence

back to the original space-time co-ordinates. Users specify

the region to be magnified using scribbles on a reference

frame (Fig. 2, top-left).

3.1. Warping

Given an input sequence I , we want to estimate a stabi-

lized sequence IS by temporally registering it over a refer-

ence frame r. We model the large scale motion in the ROI

with low-order models Φ (either affine or translation-only)

to preserve the small-scale motion to be magnified:

IS(x, t) = I(Φr,t(x), t), (1)
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Figure 2: Components of DVMAG. White and black strokes denote positive and negative samples for Region of Interest (top-left). We

show the spatio-temporal slice of the dashed yellow line (top-left). In this sequence the shadow of the camera-man appears on the ground.

The camera-man has his left hand on his shoulder and he is periodically moving it up and down. This motion however is too small to be

observed in the original sequence (dashed-red, bottom left). Our technique has 2 main stages. The first temporally aligns the ROI while the

second does the actual magnification (dashed-blue, bottom right). We remove potential magnification artifacts through texture synthesis

and manual intervention (if required). Finally we bring the video back to the original space-time co-ordinates. In this sequence the motion

mask is the entire frame. Note that the motion mask and the matting strokes are always assumed to be static in the stabilized sequence.

where x denotes 2D pixel co-ordinates. Given a set of

points Xt in frame t and their corresponding Xr, we find

Φr,t by minimizing ||Φr,t(Xt) − Xr||
2. We propose two

methods for generating Xt and its corresponding Xr: one

using KLT tracks [12] and the other using optical flow [6].

Estimating Φr,t for KLT Tracks: For a set of points

in frame t and their correspondence in the next frame,

we attempt to match them by fitting either an affine or

translation model. We impose temporal smoothness on

Φ using a Moving Average Filter. We use a local win-

dow of 5 frames centered on the examined frame t and

weighted by W ∼ N (0, 4). To reduce fitting errors we

use Iterative Reweighted Least Squares (IRLS) for solv-

ing Φ. Weights here are set inversely proportional to

||Φr,t(x) − x||2. We use a temporally iterative scheme

to estimate Φ between an examined frame t and the ref-

erence r. First we generate an estimate of Φ for each

pair of consecutive frames. For instance if r > t

we estimate Φt+1,t,Φt+2,t+1,Φt+3,t+2, .....Φr,r−1. Hence

the direct transformation from t to r becomes Φr,t =
∏u=r−1

u=t Φu+1,u. Given Φr,t we stabilize frame t by ap-

plying Eq. 1. For r < t, we do the same process but in the

opposite time direction. This stabilizes the entire sequence

I over the reference frame r.

Estimating Φr,t for Optical Flow: As optical flow is

more sensitive to motion errors than feature point trajec-

tories, one main adjustment is necessary: We do not use

a temporally iterative scheme for estimating Φr,t as errors

could pile up. Instead we directly estimate Φ between the

examined frame t and the reference frame r, i.e., in one

shot. Here optical flow is estimated between the reference

r and all frames of the examined sequence using [6]. With

this in consideration we proceed with estimating the model

parameters as for feature point trajectories.

Optical Flow vs. Feature Point Trajectories: It is im-

portant to base the motion modeling of the warping stage on

good motion candidates. This will reduce the risk of mag-

nifying stabilization errors later on. Hence, we choose be-

tween two motion generation methods, KLT tracks [12] and

optical flow [6]. We only consider motion candidates inside

a motion mask. We compute KLT tracks, and if the number

of tracks as a percentage of the number of motion mask pix-

els is greater than some threshold we use KLT tracks. Else

we use optical flow estimates. We set that threshold to 5%.

Affine vs. Translation Modeling: We estimate affine

and translational models for Φ and we pick the model

with least stabilization error. That is the one minimizing∑T

t=1

∑P

x=1
|IS(x, t) − I(x, r)|. Here I(x, r) is the ref-

erence frame, T is the number of frames in the stabilized

sequence IS and P is the number of pixels in one frame.

We carry this calculation over the ROI only.

3.2. LayerBased Eulerian Magnification

We present a layer-based approach for video magnifica-

tion. Given a region of interest, we decompose an image

into three layers: 1. Opacity matte, 2. Foreground and 3.

Background. We use Levin et al. matting [4]. We mag-

nify the opacity and foreground using the Eulerian approach

[17, 14]. If we are interested in magnifying temporal color

changes we use the Linear technique [17]. Otherwise we

use the phase-based technique [14]. We place the magnified

foreground over the original background to reconstruct the

remaining unmagnified sites. We use texture synthesis to fill

in image holes revealed by the amplified foreground motion.
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Figure 3: Illustrating our layer-based magnification. Here we seek to magnify the subtle motions in the parking gate (see yellow). We

estimate opacity, foreground and background of the gate (top row). Eulerian magnification [14] amplifies the matte and foreground (bottom

row). Direct compositing over B generates image holes revealed by the magnified motion (bottom row, red region). Hence we inpaint the

unknown sites of B (top row, yellow text) and we composite over the inpainted B instead. This removes image holes (bottom row, right).

We remove remaining compositing artifacts through manual

correction, if necessary. Finally, we de-warp the magnified

sequence back to the original space-time co-ordinates. All

steps are performed on every video frame.

Fig. 3 illustrates our approach in more detail where we

magnify the motion of the parking gate (see yellow). Note

that matting techniques [4] generate temporally inconsis-

tent foreground values outside the ROI. Directly magnify-

ing such values generates strong artifacts (see Fig. 4, left).

Hence, we always magnify the truncated foreground M×F

instead of just F (see Fig. 4, right). For simplicity, we de-

note the magnified M × F as Mm × Fm, where Mm is

the magnified matte. Given Mm and Mm × Fm, we gen-

erate a composite sequence by placing the magnified fore-

ground Mm × Fm over the original background B. Nev-

ertheless, directly using B would generate image holes in

sites revealed by the magnified motion (see Fig. 3, bot-

tom, red region). Hence, prior to image compositing we

fill in the unknown background values (see Fig. 3, top,

yellow text) through texture synthesis [5]. Given the new

inpainted background B′, we calculate the magnified se-

quence Im(x) = Mm(x)Fm(x) + (1 − Mm(x))B′(x),
where x denote all image pixels. We apply this process for

each frame of the examined sequence. This generates a sta-

bilized magnified sequence (see Fig. 3, last row, right).

Compositing artifacts can be generated in sites where

foreground and background estimates are similar (see Fig. 5

(b), inset). To fully remove such artifacts, we give the user

the option to selectively inpaint specific regions. The user

selects the corrupted sites in only the reference frame (Fig. 5

(b) blue mask). The entire video is then corrected by fill-

ing the corrupted sites with original sequence values (Fig. 5

(c)). Out of nine examined sequences this manual correc-

(b) Magnified(a) Magnified

Figure 4: F vs. M × F magnification. Matting [4] generate

temporally inconsistent foreground outside the examined object.

This generates strong blurring artifacts when magnified (see left).

Magnifying M × F instead remove such artifacts (right).

(b) Artifacts mask (blue) (c) Correction(a) Original

Figure 5: Example of compositing artifacts (in blue). Region of

Interest is shown in red. To remove such artifacts the user se-

lects the corrupted sites in only the reference frame (using the blue

mask). The entire video is then corrected by filling the corrupted

sites with original values.

tion was required in only one sequence.

The last step of our algorithm de-warps the magnified

composite sequence Im back to the original space-time co-

ordinates. In our implementation we use the previously

saved motion parameters (Φr,t in Sec. 3.1) to interpolate

the de-warped sequence.

4. Results

We have performed experiments on real sequences as

well as on synthetically-generated inputs with ground truth
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Video α ωl(Hz) ωh(Hz) fs(fps)

Eye 30 20 70 1000

Bulb 15 20 70 1000

Gun 20 8 33 480

Water 10 5 6 29

Shadow 50 2.8 3.2 29

Parking 40 4 5 29

Leaves 20 0.5 2 29

Sim1 0-120 4.9 5.1 24

Sim2 50 72 92 600

Table 1: Examined Sequences and values for: amplification fac-

tor α, examined frequency spectrum ωl−ωh Hz and sampling fre-

quency fs. Eye and Bulb are from www.youtube.com/user/

theslowmoguys. Gun is from www.guntalk.com.

available. For real sequences we assess performance quali-

tatively. For controlled experiments we assess performance

quantitatively against ground-truth. Results show that state

of the art methods optimized for small motion generate

magnification artifacts when handling large displacements.

Our technique, DVMAG, significantly reduces artifacts and

increases the domain of applicability. Table 1 lists the ex-

amined sequences with the corresponding parameters.

4.1. State of the Art Techniques

We compare our technique (DVMAG) against two video

magnification approaches, Lagrangian and Eulerian [17,

14]. For the Eulerian approach we use the Linear technique

[17] for the Bulb sequence, while remaining sequences are

processed with the phase technique [14]. We use the au-

thors’ implementation of both the phase and linear tech-

niques. For the Lagrangian approach, the original imple-

mentation is not available. We first temporally stabilize the

examined sequence using our stabilization (Sec. 3.1). We

then estimate a dense motion field with Liu et al.’s optical

flow [6]. Finally magnification is achieved by scaling the

motion field.

To assess our stabilization (Sec. 3.1) we compare DV-

MAG against two further magnification approaches. Here

we use two off-the-shelf stabilization techniques to stabi-

lize the examined sequence. We then magnify the stabilized

sequence using the Eulerian approach [17, 14]. We exam-

ine Youtube [3] and Adobe stabilization [9]. The former is

available through Youtube video manager while in the lat-

ter we use After Effects Warp Stabilizer VFX. After Effects

allows the user to define a motion mask. Hence for fair

comparison After Effects results use the same motion mask

of DVMAG. We also compare against one motion compen-

sation technique. We use Liu optical flow [6] to generate

motion estimates between each frame and the reference.

For each frame we move its pixels using the dense optical

flow estimates. This generates a prediction of the examined

frame as seen by the reference. We finally proceed with

Eulerian magnification as in Youtube and Adobe.

For Lagrangian, After Effects and Liu [6] we only mag-

nify the Region of Interest. For the remaining techniques

we magnify the entire frame as in many cases the ROI is

moving, even after stabilization. For easier assessment all

results are temporally stabilized over the reference frame of

DVMAG. Eulerian magnifications are temporally stabilized

using our technique (Sec. 3.1). The remaining techniques

by definition should be stabilized prior to magnification.

4.2. Real Sequences

Fig. 6-8 show DVMAG magnification for some se-

quences and their comparison against different techniques.

For each technique we show one frame and a spatio-

temporal slice from the magnified sequence. In Fig. 6 we

examine the Bulb sequence. In this sequence a person is

holding a bulb and moves it up in the vertical direction.

Processing this sequence with DVMAG reveals a tempo-

ral variation in the light strength. This variation is caused

by the alternating electrical current and is hardly noticeable

with no magnification (see Fig. 6 original). Processing Bulb

with Liu [6] does not reveal any temporal changes. This is

because optical flow is estimated in a way to minimize tem-

poral variations. The remaining techniques also do not re-

veal any useful temporal variations. The Eulerian approach

generates color clipping artifacts (see dashed red). Such ar-

tifacts are due to filtering the temporal misalignments of the

input frames. Similarly clipping artifacts are generated by

Youtube stabilization errors (see dashed red). Finally the

Lagrangian approach generates noisy results.

Fig. 7 shows the results generated for the Parking se-

quence. This video shows the entrance of an underground

car parking. The opening and closing of the parking white

gate causes the gate to vibrate. Such vibration is too small

to be observed from the original sequence (see Fig. 7 Origi-

nal). Processing Parking with DVMAG magnifies the gate

vibration. Our layered-based magnification maintains the

integrity of the rest of the sequence (see inset). After Ef-

fects does magnify the vibration however it generates more

blurred results than DVMAG (see yellow region). In ad-

dition it corrupts sites around the gate boundaries. How-

ever DVMAG maintains the integrity of such sites through

matting and texture synthesis. The parking vibration is not

magnified by any other technique. Eulerian and Youtube

generate blurring artifacts while Lagrangian generates noisy

results (see dashed red). Fig. 8 processes the Gun se-

quence with different magnification techniques. This se-

quence shows a person firing a gun. We show the spatio-

temporal slice of the green dashed line as the gun is fired

(see top, left). Examining the original sequence shows that

the shooter hand is static while taking the shot. Magnifying

the sequence with DVMAG shows that the arm moves as the
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Figure 6: Original sequence (top) and magnification using (in clock-wise direction): Liu [7], Lagrangian, DVMAG, Eulerian and Youtube.

In this sequence a person is holding a bulb and moves it up in the vertical direction. The ROI strokes are shown in white and black while

the motion mask is shown in solid red (left-most column). For each magnification we show the spatio-temporal slice for the dashed green

line (original, top-left). Our approach DVMAG reveals the temporal light changes in the bulb caused by the alternating electrical current.

The remaining techniques do not reveal any temporal variations. Eulerian and Youtube generate clipping artifacts that manifest as sharp

transition in color (see dashed red, compare with dashed blue). The Lagrangian approach generates noisy magnification.

time

y

Youtube

Eulerian

DVMAG

Original Lagrangian

After Effects

Figure 7: Original sequence (top) and magnification using (in clock-wise direction): Lagrangian, Eulerian, DVMAG, After Effects and

Youtube. The ROI strokes are shown in white and black while the motion mask is shown in solid red (top-left). For each processing

we show the spatio-temporal slice for the dashed yellow line (top-left). DVMAG reveals the vibrations in the white parking gate and

maintains integrity of nearby data. Eulerian and Youtube generate significant blurred results and Lagrangian generates noisy magnification

(see dashed red). After-Effects reveals the gate vibration however it generates more blurred results than DVMAG (see yellow region). In

addition it corrupts sites nearby the gate boundaries. Thanks to Matting and texture synthesis DVMAG maintains integrity of such sites.

shot is taken. Eulerian, Youtube and After-Effects generate

blurred results. Liu [6] does not reveal the arm movement.

In summary, our approach magnifies regions of interest,

maintains integrity of nearby sites and outperforms all other

techniques. The Eulerian approach generates blurry magni-

fications. Youtube stabilization can not remove large mo-

tions and hence also generates blurry results. Multiple mov-

ing objects generate stabilization errors in After Effects.

These errors are magnified. In addition After Effects usu-

ally corrupts sites around the examined object boundaries.

Lagrangian is sensitive to motion errors and hence generates

noisy results. Finally direct motion compensation (Liu [6])

hardly amplifies temporal variations. This is because opti-

cal flow is estimated in way to minimize temporal changes.
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Figure 8: Original sequence (top) and magnification using (in clock-wise direction): Liu et al. [6], Eulerian, DVMAG, After Effects and

Youtube. The ROI strokes are shown in white and black while the motion mask is shown in solid red (top-left). For each processing we

show the spatio-temporal slice for the dashed green line (top-left). In this sequence a person is firing a gun which causes his arm to slightly

move up and down. This arm movement however is not observed in the original sequence (see top-left). DVMAG magnifies the arm

movement (see the spatio-temporal slice) while the remaining techniques generate blurring artifacts (see blue arrows for After Effects).

4.3. Controlled Experiments

Sim1: We create a reference frame containing a white

circle and a red rectangle (see Fig. 9, left). The white circle

is the region of interest (ROI) to be magnified, while the red

rectangle is used to generate motion candidates. We define a

local motion as dj = A sin(2π f
fs
j) where A = 0.25 pixels,

f = 5 cycle/frame and fs = 24 frame/second. We generate

frame j of Sim1 by shifting the white circle with dj along

the horizontal direction. Doing that for 200 frames gener-

ates a sequence with the white circle vibrating. Here (A, f)
are the amplitude and frequency of vibration respectively.

We then add a large global motion to the vibrating sequence

by shifting each frame by ∆j = A sin(2π f
fs
j). ∆j is the

global motion at frame j where A = 40 and f = 0.1. The

global motion only occurs along the horizontal direction.

The final generated sequence is Sim1.

We process Sim1 using different magnification tech-

niques. The aim is to assess the ability of magnifying the

vibration of the white circle. We examine different am-

plification factors α and we compare against ground-truth.

Ground-truth is generated using the same method of gener-

ating Sim1. For an amplification factor α the corresponding

ground-truth is calculated by shifting the white circle of the

reference frame by dj = A(α+1) sin(2π f
fs
j). As in Sim1

j indexes the frames, A = 0.25 pixels, f = 5 cycle/frame

and fs = 24 frame/second. For ground-truth we do not

add a global motion as all comparisons are done against a

temporally aligned version of the generated magnifications.

Fig. 9 and Fig. 10 (left) shows the magnifications of

Sim1 as generated by different techniques. Here we use

an amplification factor of α = 20 and we examine vibra-

tions in the range of 4.9 − 5 Hz. Motion candidates are

generated using KLT tracks [12] on the red rectangle. In

Fig. 9 we show the spatio-temporal slice for the blue line

(see reference frame). In Fig. 10 (left) we show SSIM [16]

with ground-truth for each examined frame. SSIM(I1, I2)
measures the structure similarity between the two images I1
and I2. Here SSIM = 1 denotes exact ground-truth simi-

larity and a value of 0 denote no similarity at all. Note that

in Sim1 only sites inside the yellow rectangle of Fig. 9 are

taken into consideration while estimating SSIM.

Fig. 9 shows that DVMAG best resembles ground-truth.

Eulerian and Youtube generate significant blurring artifacts,

while Lagrangian is sensitive to motion errors. After Effects

generate poor stabilization due to the absence of enough

long feature point trajectories. Fig. 10 (left) shows that the

Lagrangian error follows the same profile of the global mo-

tion. The error increases as the magnitude of the global mo-

tion increases. In addition it reaches its minimum at frame

0 and 120 as global motion is minimal. This shows that

Lagrangian magnification is sensitive to motion estimation

errors. Examining the remaining techniques in Fig. 10 (left)

shows that DVMAG outperforms all other approaches.

Fig. 10 (right) shows how Sim1 behaves with different

amplifications α. Here at each α we estimate the mean

SSIM of the entire magnified sequence against ground-

truth. Fig. 10 (right) shows that DVMAG can handle larger

amplifications with less errors over all other techniques. For

instance errors in DVMAG with α = 20 are almost equiva-

lent to errors in Eulerian, After Effects and Lagrangian with

α = 1. In addition Fig. 10 (right) shows that DVMAG has

the slowest rate of degradation among most techniques. For

instance in the range α = 0 − 40 the slopes of Youtube,
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Reference Frame Original Ground-truth Lagrangian Youtube Eulerian DVMAGAfter Effects

Figure 9: Ground-truth verification of DVMAG compared against

other techniques. Left: A frame from Sim1, where we generate

motion candidates from the red rectangle movement. Sites inside

the yellow rectangle are the only sites used in the quantitative as-

sessment of Fig. 10. Right: Spatio-temporal slices for the blue line

(see left) for different magnification techniques. DVMAG best re-

sembles ground-truth and does not generate blurring artifacts as

other techniques.

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame number

S
S

IM

Lagrangian
Youtube
After Effects
Eulerian
DVMAG

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amplification

S
S

IM

Lagrangian
Youtube
After Effects
Eulerian
DVMAG

Figure 10: Left: SSIM with ground-truth for each frame of Sim1.

The larger the SSIM the better. DVMAG outperforms all exam-

ined techniques. Right: SSIM with ground-truth over different

amplification factors. Our approach handles large amplifications

with less magnification artifacts over all other techniques. It also

has the lowest degradation rate as a function of amplification.

Eulerian and Lagrangian are steeper than DVMAG. This

shows that DVMAG is more robust to magnification arti-

facts over all other approaches.

Sim2: We explore how large motion degrades magnifi-

cation and how such degradation is handled by DVMAG.

We examine the Guitar sequence from Wu et al. [17]. This

sequence does not have any large motion, only small mo-

tion due to the subtle movement of guitar strings. We use

the phase technique [14] to magnify the Low E note. We

treat this magnification as the ground-truth. We then added

a large global motion in the same way global motion was

added to Sim1. Here we use A = 50, f = 0.2 both in the

horizontal and vertical directions. The generated sequence

is Sim2. We process Sim2 with the Eulerian approach, Af-

ter Effects and DVMAG. We set α = 50 and we examine

the frequency spectrum 72−92 Hz. For DVMAG we gener-

ate motion candidates with Liu et al. [6] optical flow. Here

the entire frame is treated as the motion mask.

Fig. 11 (first row) shows an original frame from Sim2

and its magnification with different techniques. We show

the spatio-temporal slices of the blue line (see top, left). The

string vibration due to Low E note is evident in the ground-
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Figure 11: A frame from Sim2 (top-left) and its magnification us-

ing different techniques (top-right). Here we zoom on the spatio-

temporal slice of the blue line (see top-left). DVMAG outper-

forms Eulerian in resembling the ground-truth. Bottom: SSIM

with ground-truth for different techniques. Here SSIM is estimated

for only sites included in the yellow rectangle (see top-left). SSIM

shows that our approach outperforms all other techniques.

truth. The Eulerian approach generates significant blurring

and does not reveal the string vibration. DVMAG correctly

resembles the ground-truth and does not generate blurring

artifacts. Fig. 11 (bottom) shows the SSIM of each mag-

nified frame against ground-truth. Here we only consider

sites included in the yellow rectangle (Fig. 11, see top-left).

After Effects stabilization suffered from temporal shakiness

due to erroneous tracks. This shakiness became more ap-

parent after magnification. DVMAG outperformed all tech-

niques. In addition it outperformed the Eulerian approach

by a factor of around 200% (see Fig. 11 bottom).

5. Conclusion

We presented a video magnification approach for ampli-

fying small motions within large ones. Current magnifica-

tion techniques generate significant artifacts when large mo-

tions are present. Our approach is based on temporal stabi-

lization followed by layer-based magnification. Matting is

used to magnify only region of interest while maintaining

integrity of nearby sites. Results show handling larger mo-

tions, larger amplification factors and significant reduction

in artifacts over state of the art. Future work can address

handling multiple different motions in an examined object.
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