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Abstract

We prove thaiCSP(A) for an idempotent algebra has bounded rela-
tional width if and only ifvar(A) omits the unary and affine types. If it
has bounded relational width it has relational width at m&stThe prob-
lem, given a relational structur4, decide ifCSP(.A) has bounded relational
width (equivalently, if the variety generated by the cop@sding algebra
omits the Boolean and affine types) is polynomial time.

1 Introduction
For introduction into relational and other widths see [6].

Theorem 1 Let A be a finite idempotent algebra. Probled$P(A) for an idem-
potent algebra\ has bounded relational width if and onlyfr(A) omits the unary
and affine types. If it has bounded relational width it hagtieinal width at most 3.

For a relational structurel let Alg(.4) denote the corresponding algebra. In
the RELATIONAL STRUCTURE OF TYPE2 problem we are given a finite relational
structureA such that all its polymorphisms are idempotent, and thetouess
whethervar(Alg(.4)) omits the unary and affine types, or, equivalently, by Theo-
rem 1, whetheCSP(A) has bounded relational width.

Theorem 2 RELATIONAL STRUCTURE OF TYPEZ2 is polynomial time.

2 Preliminaries

For introduction for multi-sorted CSP and other techniggisee e.g. [2].



2.1 Colored graphs.

Let A be a finite idempotent algebra. The subalgebra generated by sd8 C A
will denoted bySg(B). A pair ab of elements fromA is called aredgeif and only

if there exists a congruenaeof Sg(a,b) and a term operatiof of A such that
either f9 is an affine operation ofig(a,b)/y, or f is a semilattice operation on
{a?,b%}, or £ is a majority operation ofia’, b°}. Edgeab is calledthin if § is the
equality relation. Otherwise it is callgtick

The color of an edge is defined in the same way as for conses\valgebras.
If there exists a congruendeand a term operatiofi € Term(A) such thatf? is a
semilattice operation ofu’, b’} thenab is said to beed or to have thesemilattice
type An edgeab is yellow or of themajority typeif it is not red and there are a
congruence) and f € Term(A) such thatf? is a majority operation ofa’, v?}.
Finally, ab is blue or of the affine typeif it is not red or yellow and there are a
congruence and f € Term(A) such thatf? is an affine operation ofig(a, b) /.

In this paper we denote b§r(A) the graph with vertex set, whose edge set
consists of thin red edges Afand yellow edges (possibly thick) &f AlgebraA is
calledhereditarily red-yellow connecteifl Gr(B) is connected for any subalgebra
of A. The results of [5] imply the following

Proposition 1 Let A be an idempotent algebra. Thenis hereditarily red-yellow
connected if and only ifar(A) omits the unary and affine type.

We will also need two other useful properties. An algehrsuch that every its
thin red edge and yellow edge is a subalgebra will be caewlomerate Every
algebra can be made conglomerate without destroying theectinity of Gr(A)
and that of subalgebras &f

Proposition 2 ([5]) LetA = (A, F') be a hereditarily red-yellow connected idem-
potent algebragb an edge ofsr(A) of semilattice or majority typé), a congruence
witnessing this, and leR,, = (a/9 U b/y) be a thick yellow edge or a thin edge
ab of Gr(A). Let alsoA’ = (A; F') be a reduct ofA such thatF” contains all
operations fromF preservingRR,;,. ThenA'’ is hereditarily red-yellow connected.

The reduct of an algebrA constructed by applying Proposition 2 iteratively
until every edge of the resulting algebra is a subalgebrbeitalled theeonglom-
erate reduciof A.

Operations witnessing the type of edges can be significanifprmized.

Proposition 3 ([5]) Let A be a finite idempotent algebra. For each edgdet 6,
denote the congruence witnessing that. There are term tpessf, g, h of A such
that



f|{a/9 b0} is a semilattice operation iib is a red edge (not necessarily thin),
it is the first projection ifad is a yellow or blue edge;

la/y b0} is a majority operation itzb is a yellow edge, it is the first projection

if abis ablue edge, anﬁ{a/eab’b/eab}(w, Y, Z) = f|{a/9ab’b/9ab}(x7 f|{a/9ab’b/9ab}(y’ Z))
if ab is red;

h|Sg(ab)/9 \ is an affine operation operationdb is a blue edge, itis the first projec-

tion if ab is a yellow edge, anﬂ|{a/€ab7b/€ab}(x,y, z) = f|{a/0ab7b/0ab}(w’f|{a/9abvb/0ab}(y’z))
if ab is red.

Fixing operationf which is semilattice on all red edges we can also choose
and fix orientation of such edges:db is a red edge then it is directed fraarto b
if f(a,b) = f(b,a) = b (we will only need thin edges). This will also be denoted
by a < b. We will always assume that operatighis fixed. If there is a directed
path inGr(A) connectingz andb and consisting of red edges then we write b.

Proposition 4 ([5]) Let A be an idempotent algebra. There is a binary term oper-
ation f of A such thatf is a semilattice operation on every red edgé&oefA) and,
foranya,b € A, eithera = f(a, b) or the pair(a, f(a,b)) is a thin red edge.

Let Gr/(A) denote the subgraph @#r(A) obtained by removing all yellow
edges. It will sometimes be convenient to consider the gdavtider Scc(A) of
strongly connected components (scc)af (A). The scc containing an element
will be denoted byu. Thefilter generated by, denotedFt(a), is the union of all
scc’s from the filter generated layin Scc(A). By max(A) we denote the set of the
maximal elementsf the graphGr/(A), that is, elements from maximal (under the
partial order) scc’s oGr(A).

An r-path in Gr(A) is a path in this graph that contains only red edges. An
r-path is said to beirectedif all its edges are oriented in the right direction. Anal-
ogously, Anry-pathin Gr(A) is a path in this graph that contains both red and
yellow edges. An ry-path is said to loirectedif all its red edges are oriented in
the right direction.

3 Prerequisites
In this section we prove several auxiliary statements.

Lemma 1 (Path Expansion Lemma)Let R be a subdirect product of relations
R; and Ry, Ry m-ary, and(a,b) € R. Ifa = aj,as,,...,a; € Ry is an r-path,



then there areb = by, by,..., by € Ry such that(a;,b;),...,(ag, bg) is an
r-path in R. Moreover, ifb is maximal, then thd,; are also maximal and belong
to the same scc.

Proof: See [2]. a

Lemma 2 Let B be a subalgebra of. Then, for every:,b € B such thatb €
Ft(a), there exists: € N such that the equation

f(f( . .f(f(a,l'l),l'g) cee wrn—l)xn) =0

is solvable inB.

Proof: The lemma follows straightforwardly from the definition efonnectedness.
O

By F(A) for an algebra\ we denote the set of ifactors that is homomorphic
images of subalgebras.

Lemma 3 Let R be a subdirect product db,,...,D,, € F(A)andIy,...,I; C
{1,...,n}. Then for any tuple’ = (ali]);c;, € max(pr;, R) there exista[j] €
Dj, j € [n] — I, such thata € R andpr;a € max(pr;,R) for eacht ¢
{2,...,k}.

Proof: See [2]. a

Lemma 4 Let R be a subdirect product db,,D, and B,C maximal scc’s of
D1, Dy, respectively, such thak N (B x C) # &. Then for anyb € B there
isc e C with (b,c) € R.

Proof: See [2]. O

An algebraB from F(A) is said to benaximal generated B = Sg(C') where
for some maximal sc€'. It is calledarbitrarily maximal generatedf B = Sg(C')
where for some maximal sa€. We will need three versions of the following
lemma.

Lemma 5 Let R be a subdirect product db;, D, € F(A), andD,, D, are gener-
ated by maximal scc'B;, Bs, respectively, such that there exist an elemeat B,
with {a} X By CD. ThenR =Dy x Ds.



Proof: We prove by induction thafc} x Dy C R for everyc € D;. The
inclusion {a} x Dy = Sg({a} x Bz) € R forms the base case of induction.
Further, suppose that theredse D, such thatd < ¢ and{d} x Dy C D. Take

an arbitraryb € B,. For a certairb; € D, we have<§,> € D. Set (;) -
1

f <<Z> ’ <bcr>> € R. Thenb, € b = B,. By Lemma 2, there exigh, ... b, €
D, such thatf (f(... f(by,b2)...),b;) = b. Itis easy to see that

() 6) ) () =6) =

Therefore {c} x Dy = Sg({c} x b2) C R. Since there is a path fromto every
¢ € max(D,), this holds for every: € b;. Finally, asD; = Sg(Bj), the result
follows. O

Lemma 6 LetR be a subdirect product of an maximal generated algelradD, <
F(A) generated by maximal sccs,; , As, respectively, such thad N (A; x Ay) #
& and there exists an element D; with {a} x By C D. ThenR = D; x Ds.

Proof: We prove that{c} x Dy C R for everyc € A;. As in the proof of
Lemma 5 we can show thatfb} x Dy C Rthen{c} x Dy C R foranyc € Ft(b).
Therefore it suffices to prove the result only for one elenfiem A;.

First we show that there are a term operatjdrof A andb € A; such that
f'(b,a) = bandf’ is a semilattice operation on every thin red edg¢..(lif, a) = b
for someb € A, we setf’ = f. Otherwise take an arbitrary elemégte A; and
construct a sequends, by, by, ... with b, 11 = f(b;,a). Clearly all theb; belong
to A;. There are, j such that, = b,;. Then choosé = b; and

f@y) = f f(f(zy),y) ... y)
j—itimes

As is easily seenf’(b,a) = b.

SinceR N (A; x Ag) # @, by Lemma 4 this set is a subdirect productAf
andAs. There is a maximal € As with (b,d) € R. LetC be the set of alé € A,
such that(b,e) € R, note thatC' # &. If C # A, then there are ¢ C and
e/ € A; — C andee’ is a thin red edge. Then

b b a
(0)=((0)-()) ==
a contradiction.

To complete the prove we use the fact tHatgenerate®); and A, generates
Ds. O



Lemma 7 Let R be a subdirect product db;, D, € F(A), let A;, A, be maximal
scc’s of Dy, Dy, respectively, such thak N (4; x As) # @. If there exist an
element € D; with {a} x A2 C R, then4; x A, C R.

Proof: We prove that{c} x A2 C R for everyc € A;. As before it suffices
to prove the result only for one element frofy. Note also that elementcan be
chosen maximal.

As in the proof of Lemma 6, there are a term operatfbof A andb € A; such
that //(b,a) = b and f’ is a semilattice operation on every thin red edge. Since
RN (A x Ag) # &, we complete the proof as in Lemma 6. O

Lemma 8 LetA = Sg(a,b) be simplea, b € max(A), and R a subdirect square

of A. Let alsoS be the tolerance defined bic,d) € A2 | (e,c),(e,d) €

R for somee}. If S'is a connected tolerance then there is a sequeneedy, . . ., dy, =

b’ suchthatd;,d;11) € S, d; ismaximalp’ € b, and ifa; are such thata;, d;), (a;,di+1) €
R thenga; can also be chosen maximal.

Proof: We start with any sequenee= dy,...,d; = b, (d;,d;+1) € S con-
nectinge andb. Such a sequence exists becadsis a connected tolerance. We
prove by induction ork. The base case of induction is obvious by the choice
of a. Supposel; is maximal. Letd;;1 = e; < ... < e; be a directed r-path
ande, a maximal element. Let als(h;,e;) € R be extensions of the; and
(ag,dy), (ag,dg+1) € Rfor g € [k — 1]. Then for eachy, i < ¢ < k — 1, we con-
struct the sequence, = a}l <...< af] and for eachy, i < ¢ < k, the sequence
dg =dj <...<ds, where

al = f(al~",b;) and & = f(d ;).

Then observing that
al a altt al b;
q ) — q and q — q J+1 and
<d§> (dq> (d?fl &) <€j+1 ’
al > < a ) altt a b;
q — q and q — vq , < ]+1>
<d;+1 dq-‘rl dflﬁ f d?1+1 €j+1

S S
we get that<gg> , ( ﬁj) € Rforanyi: < ¢ <n — 1. Note also thatl;_, is a
q q
maximal element. Continuing in a similar way we also can gotee that; is a
maximal element.
Sinced; is maximal andi; < d;, these two elements belong to the same scc.
Therefore, there is a directed r-path= ¢} < ... <e¢; = d,. Let also(b;-, e;.) €R
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be extensions of theg-. Then for eachy, i < ¢ < k — 1, we construct sequence
_ 1 t . _ a1 t

ag =p; < ... < p, and for eachy, i < g <k, sequencel; =7, < ... <7,

where

ph=fi LY and  rd=f(riTef).

Then observing that
1 s j-+1 j
Pg) _ (% and Py = Py Vi and
Ty dy g’ ry) \€j-1) )’
1 .
(B)=(m) wa ()= ((2).(5)
Tg41 Tg+1 7”;4-1 7”gﬁ-l "\ €)1

t t

we get that<pg> ) ( f‘l > € Rforanyi < ¢ < n — 1. Note also that! = d,
Tq Tg+1

rt, , is a maximal element, and, belongs to the same scclas 0

4 Maximal-generated algebras

First, we prove Theorem 1 in a narrow particular case. Wiigerhain result of
this section will be used only in the very end, several inegtiate results will be
very helpful throughout the paper.

Arguments in this section follow the line of those in [3].

4.1 Binary relations

Ouir first purpose is to show that a subdirect product of simapbitrarily maximal
generated algebras has a very restricted form. graph of a mappingr: Dy —
Dy is the binary relatiorG = {(a,7(a)) | a € D1} overDy, Do.

Lemma 9 Let R be a subdirect product of simple maximal generaiadD, €
F(A), generated by maximal scc;, Ao, respectively, and leR N (A4; x Ay) #
&. ThenR is either the graph of a bijective mapping frdiq to Dy, or Dy x Ds.

Proof: Notice first, that ifR is the graph of a mapping : D; — Dy, then the
kernel of r is a congruence db; and, sincdD, is simple,r is a bijection. The
same holds if? is the graph of a mapping frofl; into D; .

Suppose thaR is neitherD; x D, nor the graph of a bijective mapping, and
that|D; | + |D2| is the smallest number such that there exists a subdiredupro
of simple maximal generated with this property. We show thate isb € D, [or
b € Dy] such that{b} x Dy C R [respectively]D; x {b} C R].
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Fora € Dy,b € Dy by B, C, we denote the sefs: | (a,c) € R}, {c| (¢,b) €
R} respectively.

CLAIM 1. For anyA C D; [any A C D9, there isa € D4 [respectively,a € D]
andb € A, ¢ € Dy — A [respectively,c € Dy — A] such that(b,a), (c,a) € R
[respectively,(a,b), (a,c) € R].

The claim follows from the fact that the tolerances = {(a,b) | there isc
such that(a, ¢), (b,c) € R} andps = {(a,b) | thereiscsuch thatc,a), (¢,b) €
R} onD; andDs, respectively, are connected.

Takea € D, such thaiB,| > 1 and setF'; = {a}, and for eachi > 0

E. _ UbEEi Bb if 2 is odd
U7 Usep, G ifdis even.

By Claim 1, for eachi > 0, E; C E;;9 unlessk; = D; or E; = D,. Therefore, for
somel > 1, E; = D, or E; = Dy. Without loss of generality, suppodg = Do,
andl_; # Dy, B # Do.

CLAIM 2. Foreach,1 <i <, E; is a subalgebra db, orDs.

We prove the claim by induction. In the base case of induclpn= {a} is
a subalgebra, becauBg is idempotent. IfE; is a subalgebra, anfl; C Dy, then
for anyas, by € E;44 there aren;, by € E; such thataq,aq), (b1,b2) € R. Then

flai,b1)\ ai by ‘ . |
(f(a2,b2)> =/ <<a2> ’ <b2>> € R, f(a1,b1) € Ej, henceay + by € Eiy.

The proof in the cas&; C D, is analogous.

Thus, E;_; is a proper subalgebra &f, such that J,c;, | By = D>.

Define a sequencBg, B, ...,B; of algebras and a sequence of congruences
0o, 01, - .., 0, whered; is a congruence d§; through the following rules.
1) By is generated by a maximal scc 6f_; such that it containg € ID; with
|B,| > 1andB, N Ay # & (later we show that such an scc exists).
2) Suppose thaB; is already defined. Lef; be its maximal congruence or the
identity relation ifB; is simple.
3) If B; is a singleton, theik = ¢ and the process stops. OtherwiseBgt; to be
the algebra generated by a maximal scc of a clags thfat contains: € Dy with
|B,| > 1andB, N Ay # @ (as we shall prove later, such a class exists).

SetB, = B, /,, and

RY = {(a,b) | a = " whered € B;, (d/,b) € R}
- B; X Ds.



We prove that, for every, (i) for any b € Dy there exists: € B, such that
(a,b) € R, (ii) if B; is generated by its maximal sétthen(c,d) € R for some
c € Sandd € Ay, and (iii) R®) = B/ x Dy.

If 7 = 0, then (i) holds by the choice df;_;, and Lemma 3. Considet’ =
RN (E;—1 x Dy). Since|B,| > 1 for somea € Ey_, the tolerance), = {(a,b) |
there isc such that(c, a), (¢,b) € R’} is connected. Take two maximal elements
b,c € Dy such thath € A,. By Lemma 8 there are maximal elementsc E,_;
andb’ € Dy such that(a’,b), (a’, ') € R'. Therefore for the maximal component
generatingd, we can choose’. Also (i) holds, aq«a’,b) € Randd’ € a,be As.
Therefore,R(”) is not the graph of a mapping, and, sirggis simple, maximal
generated anB)| + |Dq| < |Dy| + |Do|, we getR(®) = Bl x Dy,

Suppose that for — 1 properties (i), (ii), (iii) hold. Then, for any’ € B._,
we have{a'} x D, C R(—1), that is, by Lemma 3, for everly € I, there exists
a € B; such thata, b) € R, that proves (i) fori. By (ii) for i — 1 thef;_,-classA
containingB; contains an elememtsuch that B,| > 1. Arguing as in the previous
paragraphB; can be chosen such thiatc B; and(b,c) € R for somec € Aj.
Finally, asB! is simple we haveR(") = B/ x Dy.

We have proved?¥) = B) x Dy. SinceBy is a singleton, sayB; = {b} this
impliesB;, = B}, that is{b} x Dy C R.

To complete the proof we just have to apply Lemma 5. O

Note that the second part of the proof is valid for a subdiprotuct of not
only simple maximal generated algebras.

Corollary 1 Let R be a subdirect product db,, D, € F(A) whereD;, is simple
maximal generated an® is not the graph of any mapping: D; — Dy. Then
there exists: € D; such that{a} x Dy C R.

To prove this we should pi, equal tomax(D;).

Corollary 2 Let R be a subdirect product of maximal generafed D, € F(A),
say, the algebras are generated by their maximal selg'sA-, respectively, and
D5 is simple. Let alsd® N (A1 x Ay) # . Then eitherR = Dy x Dy, or there is
a surjective mapping : D; — D, such thatR = {(a,7(a)) | a € Dy }.

Proof: If R is not the graph of a mapping then we are in the conditions of
Corollary 1. Therefore there exists € D; such that{a} x Dy C R. Since
RN (A x Ag) # &, by Lemma 6, we geR = D; x D,. O

Observe now that if? is a subdirect product of abitrariry maximal generated
D1, Dy, then by Lemma R N (A4; x Ay) # & for some maximal scc’sl;, Ay
such thafD; = Sg(Al) andDy = Sg(Ag)



Corollary 3 LetR be a subdirect product of arbitrarily maximal generated, D, <
F(A), andDs is simple. Then eitheR = D, x D9, or there is a surjective mapping
m: Dy — Dy such thatR = {(a,7(a)) | a € Dy }.

4.2 Multi-ary relations

In this subsection we consider non-binary relations.

Lemma 10 Let R be a subdirect product of simple maximal generdigdDs, D3 €
F(A). Let the algebras be generated by maximal setjs A,, As, respectively,
and RN (Ay x Ay x A3) # @. If D; x D; C pr, ;R for everyi, j € {1,2,3}, then
R = ]D)l X ]D)Q X ]Dg.

Proof: Suppose without loss of generality thit | < [Dq| < |D3|. Fora € Dy
set
Rq = {(b2,b3) | (a,b2,b3) € R}.

Notice that, for every: € D, R, is a subalgebra ofr, 3, and, sincer; o R =
Dy x Dy, pry 3R = Dy x D3, the algebrak, is a subdirect product db,, D3. By
Lemma 9,R,, is either the graph of a bijective mappinglds x Ds.

Suppose first thaR?, is not the graph of a mapping for somee D;. By
Corollary 1 there i$ € D5 such thata, b) x D3 C R. Applying Lemma 6 treating
R as a subdirect product of , ? = D; x Dy andD3 we getd; x Ay x D3 C R.
This impliesR = Dy x Dy x D3.

Now suppose that, for every € Dy, the setR, is the graph of a bijective
mappingr, : Dy — D3. This immediately impliesDs| = | D3|, let us denote this
number byk, and aspry 3R = Do x D3, there are at least different relations
of the formR,. Therefore,|D;| = k and|R,| = k for anya € D;. Moreover,
lpry 3R| = k%, which meansk, N Ry = @& whenevera # d/, a,a’ € D;. The
equivalence relation- on pry 3 R where(a,b) ~ (c,d) iff (a,b),(c,d) € R, for
somee € Dy, is a congruence gfry 32 = Do x Dj.

SincelD; = D3, Dy x D3 can be treated as the squareDaf. Recall that an

elementz of an algebra\ is said to beabsorbingif whenevert(x, y1, ... ,y,) isan
(n + 1)-ary term operation of such that depends on: and(by,...,b,) € A",
thent(a,by,...,b,) = a. A congruenced of A? is said to beskewif it is the

kernel of no projection mapping @f? onto its factorsD, is a simple idempotent
algebra, therefore, by the results of [11] one of the follogvholds: (a)D, is term
equivalent to a module; (dp, has an absorbing element; or @} has no skew
congruence. Case (@) is impossible, becdsbhas a 2-element subalgebra term
equivalent to a semilattice, but no module has such a sutragdf in case (b)

a is an absorbing element, thefia,b) = a for anyb € D, that would imply
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that any maximal scc is a singleton, which contradicts tietfatD, is maximal

generated. Finally, case (c) is also impossible, becausea skew congruence.
Thus, our assumption thai, is the graph of a mapping for all € ID; cannot

be the case, and the lemma is proved. O

Lemma 11 Let R be a subdirect product of simple maximal generdied. .., D,, €
F(A), say,D; is generated by a maximal set;; and letRN(A; x...x A,,) # <.
If D; x D; C pr, ;R foreveryi, j € [n], thenR =Dy x ... x Dy,.

Proof: We prove the lemma by induction. The base case of induetien2, 3
have been proved in Lemmas 9, Lemma 10. Suppose that the |droloha for
each number less than Takea € D; and denote byz, the set{(bz,...,b,) |
(a,ba,...,by) € R}. ByLemmal0D; xID;xD; C pry ; ;Rforany2 <i,j <n.

ThenD; x D; C pr; ;R,. Now if a is such that?, N (Ag X ... x Ayp) £ & then
by induction hypothesi®, = Dy x ... x I,,. The lemma is now follows from
Lemma?7. O

Definition 1 A relation R C D x ... x D, is said to bealmost trivial if there
exists an equivalence relatighon the sef1, ... ,n} with classedy, ..., I}, such
that

R=prp,Rx...xpr, R

WhereprIjR = {(ail,ﬂ'iQ (ail), ... ,ml(ail)) ‘ a;, € ]Dil}- [j = {il, . ,il}, for
certain bijective mappings;,: D;, — Dj,,...,m;,: D, — Dy,.

Proposition 5 Let R be subdirect product of simple maximal generated algebras
Dy,...,D, from F(A), say,D; is generated by a maximal sct;; and let R N
(A1 x...x A,) # <. ThenR is an almost trivial relation.

Proof: See [3]. a
As before the conditions of Proposition 5 hold if all the dges involved are
arbitrarily maximal generated.

Corollary 4 Let R be subdirect product of simple arbitrarily maximal genect
algebrasDy, ..., DD, from F(A). ThenR is an almost trivial relation.

Corollary 5 LetP = (V;F(A);0;C) be a 3-minimal problem instance, where
A is a class of simple arbitrarily maximal generated algebfemm F(A), and
each constraint relation is a subdirect product of its donsaiThen if none of the
constraint relations of° is empty therP has a solution.
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Proof: See [3]. a
We complete this section with two other auxiliary lemmas.

Lemma 12 Let R be a subdirect product of maximal generatéd, ..., D, €
F(A), whereD; is simple. Let alsdD; be generated by a maximal sct;,
pry ., is maximal generated, say, by a maximal §¢cR N (41 x Q) # 9,
andpr; ;R =Dy x D; fori € {2,...,n}, ThenR = D; x pry__, R.

Proof: We prove the lemma by induction on The case: = 2 is obvious.
Consider the case = 3. We use induction ofiD; | + |Dz| 4 |Ds|. The trivial case
D] + |Dg2| + |D3| = 3 gives the base case of induction. lgtbe the maximal
scc of pry 3R generating it. If bothDy, D3 are simple, then the result follows
from Proposition 5. Otherwise, suppose thigtis not simple. Take a maximal
congruence of D, fix af-classC and conside?’ C D x Dy x D3/y, R C R
such that

R = {(a,b, 09) | (a,b,c) € R},
R" = {(a,b,c) | (a,b,c) € R,c € C},

andR" C R, the algebra generated by a maximal of R” such thapr, 3Q"N
Q +# 2. Obviously,pr1,3R” = D; x C. Moreover,D; x C" C pr1’3R'", where
C" is the algebra generated by a certain maximal@tof C. By Corollary 1,
pry 3R’ is either the graph of a bijective mapping,ids x D3 /.

CASE 1. pry 3R’ is the graph of a bijective mapping: Dy — D3 /5.

In this caseB” = pr,R" is the algebra generated by a maximal €cof
B = 771(C). Since for eacha,b) € D1 x B C pry,R there isc € C with
(a,b,¢) € R, we haveD; x B C pry oR". FurthermoreD; x B" is the algebra
generated by a maximal scci x B, hencepr; ,R"” =Dy x B”.

Since|Dy| + [B"| + [C"| < |Dy| + [Dof + [D3], andpry 3R” is maximal
generated, inductive hypothesis impligs x pry 3R C R". In particular, there
is (a,b) € pry 3R NQ C pry 3R such thad; x {(a,b)} C R. To finish the proof
we just apply Lemma 6.

CASE 2. pI‘273R, =Dy x Dg/g.

Since|Dq |+ D] 4 [D3/g| < [D1]+ D2 +|D3, D3 /g is simple, anchr 5 R =
D; x Dy, by inductive hypothesisi’ = Dy x Dy x D3/4. Thereforepr; o R” =
Dy x Dy. Thenpr; , R =Dy x Dy. Now we argue as in Case 1.
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Let us assume that the lemma is provedsfor 1. ThenD; x prg R C
pry 3., R. Denotingprs R by R’ we haveR C D; x Dy x R/, and the con-
ditions of the lemma hold for this subdirect product. THus= Dy x pry R as
required. O

Lemma 13 Let R be a subdirect product db,, z D5, D3 such that it is generated
by RN (a x b x ¢) for some maximal elemenisb, ¢, and such thaé x ¢ C pr 3R,
bxeC pros R, and Q = max(priyR N (@ x A)) is strongly r-connected. Then
prisR x¢cC R.

A~

Proof: Let R’ be the relation generated by N (Q x ¢). Thenpr,,R’ is

maximal generated. It is not hard to see that for @yc’) € b x ¢ there isa’ € @
such that(a’,b', ¢’) € R. Since(b', ') is maximal by Lemma 3’ can be chosen
such that(a/, ') € max(pr;,R N (@ x b) = Q. This impliesh x ¢ C pry 3R,
and, thereforéDy x D3 C pry 3 R'. Similarly, Dy x D3 C pry 3R'. Finally, R’

is a subdirect product db;, D>, D3 and these algebras are maximal generated by
a, 3, ¢, respectively.

We show that for any subalgebfof prs R such that (a)S is maximal gen-
erated by a maximal scd, (b)) @ x A C prizR b x A C prygR; (€) Q C
priy(RN(@xbx S8)); (d) RN (Q x A) # @, the following is true: there ig € S
such thai) x {d} C R. Observe that (b) implies (b)r; R x Q C pry 3R and
proR x Q C pry 3 i/

We prove by induction on the size 6f If |S| = 1, then the claim is obvious.
Suppose that the result holds for all subalgebras satgfyamditions (a)—(d) and
smaller tharS. SetQ’ = {(c1,¢2,¢3) € Q | c3 € S}. If S'is simple then the result
follows from Lemma 10. Otherwise léthe a maximal congruence 6f and let

R’ ={(c1,¢2,¢4) | (c1,¢2,¢3) € R'}.

By Lemma 12R? = prj, R’ x S/,. Take a class’ of 4, a maximal scd3 of S’
such thatR N (Q x B) # &, and letS” = Sg(B). By the induction hypothesis it
suffices to show tha$” satisfies conditions (a)—(d).

Condition (a) holds by the choice ¢f’. Condition (b) follows from (b’) for
Q. LetC = QNprip(RN (@ x b x B)),sinceRN (Q x B) # @, C # . As
Q is strongly r-connected there adec C andd’ € @ — C such thadd’ is a thin
red edge. Take € B ande’ € S such thatd, e), (d',¢’) € R. Suche’ exists, as
Q Cprp(RN(axbxS)). Set

() =r(():(2)) e m
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Heree” € B therefored’ € C, a contradiction. Thug¢' = Q and (c) is true for
S”. Finally (d) is true by the choice @B. By inductive hypothesi§) x {d} C Q
ford € S”.

Sincepry R’ satisfies (a)—(d), there 6 € pry R’ with pr; ,R' x {d} C R’
Applying Lemma 5 we obtain the result. O

Corollary 6 LetR be a subdirect product of arbitrarily maximal generated, ... ,D,, €
F(A), whereD, is simplepry R is maximal generated, ang, ;R = D; x D;
fori € {2,...,n}, ThenR =Dy x pry__, R.

5 Connectivity

Let A be a finite algebra such thadr(A) omits the unary and affine types.

We say that an algebra satisfies theyellow connectivity propertif for any
maximal scc’sB, C of Gr’(A) there areh € B andc € C such thatc is a thin
yellow edge. The main goal of this section is to prove

Proposition 6 Any conglomerate algebraA satisfies the yellow connectivity prop-
erty.

We will prove by induction on the size @f. The base case of inductioy| =
2 is trivial. Proposition 6 will follow from a series of lemmals all the lemmas we
assume the inductive hypothesis. Thus, we assumétisa conglomerate algebra
such that every its proper subalgebra satisfies the yellowexdivity property.

Lemma 14 Let R be a subalgebra of the direct product of algebras, ..., A,
each of which satisfies the yellow connectivity propertenii satisfies the yellow
connectivity property.

Proof: We proceed by induction on the arity & If R is unary, the claim is
obvious that gives us the base case of induction. Suppogesgh# is true for all
relations of smaller arity. Take, b € max(R). We distinguish two cases.

Case 1. an| = bin]

Consider the algebr& = RN (A1 x ... x A,,_1 x {a[n]}), and takea’,b’ €
max(R') such thata < a’ andb < b’. Observe that we might not be able to take
a’ = aandb’ = b, becaus@, b may not be maximal elements if. By inductive
hypothesis there arg’ € pr,_;;a’ andb” € prj,_;b’ such thatab" is a thin
yellow edge. Clearly(a”,a[n])(b”,aln]) is also a thin yellow edge. Finally we
note that these tuples belonga(andﬁ, respectively.

14



CASE 2. a[n| # b[n]

Sincea[n], b[n] € max(A,,), there is a directed ry-patin] = ay, ..., ar = b[n]
in Gr’'(A,,) that contains exactly one yellow edge. We will show that ¢hare
aj,al,a), ..., a},a] such that

(a) there are directed r-paths franto aj and froma to b;

(b) a,a’ e HlaX(Ri), whereR; = R(Al X ..o XAy X {al}),

77
(c) eitherpry,_yja = pry,_yjaj,,, or

— if a;a;41 is a thin yellow edge thea},a; ;, € max(R;1), Where
Rii+1 = R(Al X .. A1 X {ai, ai—i—l}) (observe that, Sin(}ﬁiai_,_l is
a thin edge{a;,a;+1} is a subalgebra), and there is a directed ry-path
containing only one yellow edge froaj to a;_; in R;;1;

— if aja;41 is an r-edge thenaja] | is an r-edge and;, a; , belong to
the same scc dir’(R).

We proceed by induction oit Choosea € max(R;) such thata < aj.

It is possible because € R;. This gives the base case of induction. Suppose
a},af,...,al are chosen.

CLAIM. If a;a;4+1 is a thin yellow edge and there és€ prp, ;2 such that
(c,ai), (c,ai+1) € R, then there isl € pry,_,) R with the same property and such
thatd € pry,_qymax(R;), d € pry,_y max(R;41), andd € pry,_q max(Ri;41).

It suffices to observe that & € pr,_;(R; N Ri41) ande’ € pry,_qjRiiq1 is
such thate < e’ thene' € pry,,_;)R; ande’ € pr,_qR;11. By the assumption
(e,a;), (e,a;1+1) € R. Suppose thate’, a;) € R then

() =0 () em

SUBCASE 2A. a;a;41 IS a thin yellow edge.

If there isc € pry,_q max(Riit1) With (c, a;), (c,a;11) € R, then by Claim we
can set we can sef’' = (c, q;), aj, ;| = (¢, a;41)-

Otherwise take any € max(R;),d € max(R;+1). We havec,d € max(R;i+1).
Indeed, ifc < ¢’ € max(R;;+1) — max(R;), then there are, e’ such thae < ¢/,
(e,a;) € R,and(e’,a;11) € R. Then

(2)=7((2)- () <=
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By induction hypothesis there is a directed ry-path= c;,...,c;, = d, in
pri, 1 Riiv1. Everyc; extends to a tuple fronR;; 1 in a unique way. Thus
either (cj,a;) € R or (cj,a;+1) € R. Letj be such thafc;,a;) € R and
(cj+1,ai+1) € R,or (Cj+1, (IZ') € R and (Cj, az’—i—l) € R. We claim thatcjch is
athin yellow edge. Indeed, ;c; is a red edge then

() =2 () () e

a contradiction. Finally, for any;c;11, r-Edge(cj, ai)(Cj+1, (IZ') (or (Cj, ai+1)(cj+1, ai+1))
belongs to the same sccBf;1, and therefore to the same scddfWe set!! = ¢
anda;j , = d.

SUBCASE 2B. a,a,+1 IS a red edge.

First, we construct a sequence of element&gf ; as follows:
e Setcy to be any maximal element fro;, thus,cy[n] = a;.

e If c; is found, letd; be a maximal element fromR;;,; such thatc; < d;
andd;[n] = a;41. For instance, we can choodé = f(c;,e), wheree is
any tuplee € R with e[n] = a,1, and thend; as any maximal element with
d; < dj.

e Sincea;, ;41 belong to the same scc, there is a directed r-path fom
to a; in A,,. Expanding this path to an r-path frody, we obtain a tuple
¢’ € Rsuchthak),,[n] = a; andd; < ¢}, in R. Now setc;; to be
any maximal element fromk; with ¢/, ; < c;.

Since R;;+1 is finite for somej, ¢/ € N with j # ¢ (say,j < /¢), we have

c;j = c4. This means thak contains a directed r-path from) to d;, and fromd,
toc;. Seta] = c; anda_ ; = d;.

Summarizing, by Case 1, there is a directed ry-path fapto a// for eachi; by
Subcase 2a there is a directed ry-path feghto a/_ , for the: such that;a; 1 is
a thin yellow edge; and, by Subcase 2b, there is a directédfiymamh aj to aj_ , for
eachi such that;a; is a red edge. Moreover, in the latter cadea;, ; belong
to the same scc aR. O

Lemma 15 If ab is a yellow edge and a witnessing congruence 8§(a, b) then
there is an automorphism of Sg(a, b) /¢ such thatp(a’) = b’ andp(b?) = a’.

Proof: Follows from [5]. 0
Next we prove that a thick yellow edge can always be replacigd avthin
yellow edge.
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Lemma 16 Letab be a (thick) yellow edge itir(A), A = Sg(a, b). Then there is
a’ € max(a’) N Ft(a) and b’ € max(b?) N Ft(b) such thata't’ is a thin yellow
edge.

Proof: We prove by induction of the size @f. The base case of induction,
|A| = 2, is obvious. So suppose the statement holds for all algébraith |B| <
|A|. We also assume the induction hypothesis of Proposition 6.

CLAIM 1. a andb are not connected ig(a, b) with a r-path.

Indeed, ifa, b are r-connected then there aré € o, v’ ¢ v’ such thatv”
orbv’a" is a red edge. Howevet is a projection or{a?, b}, a contradiction.

Suppose first that there arec max(a’) andd € max(b?) such thata < c,
b < d, andSg(c,d) # A. Let#’ denote the restriction df onto Sg(c,d). Then
by the induction hypothesis there ate ¢ max(c’) andd’ € max(d?") such
thatc < ¢, d < d, anddd’ is a thin y-edge. Thus we may assume that, for
any ¢ € max(a’) N Ft(a),d € max(b’) N Ft(b), we haveSg(c,d) = A. In
particular, we may assume thatandb are maximal elements. Observe also that
max(A) = max(a?) Umaxt’.

First we show that, b can be chosen such that b), (b, a) are maximal in the
subalgebra generated ba, b), (b,a)}. Indeed, choose maximal € a’ N Ft(a),
v € v? N Ft(b) such thatSg((a’,b'), (v, a’)) is smallest possible. Lét, d) be a
maximal element in this algebra such tiatd) € Ft((a’,b")) U Ft((¥',a’)). By
Claim 1, eitherc € a?,d € v, orc € ¥?,d € af. Sincec, d are maximal, by the
choice ofd’, b’ we haveSg((c,d), (d,c)) = Sg((a’,b), (¥',a’)). Thusc, d satisfy
the required conditions.

We prove that subalgebraof A® generated bya, b, a, b, b, a), (a,b,b, a, a,b),
(b,a,a,b,a,b) contains(a, b, a, b, a,b). It will be convenient for us to denotg =
afori=1,3,5andc; = bfori =2,4,6.

CLAIM 2. (a,b,a,b) is maximal inprys, R.

Note thatpr,, R = Sg((a,b), (b, a)) and that(a, b) is maximal inpr,, R. Since
(a,b,a,b),(b,a,a,b) € prigsuR, prigR x {(a,b)} C prigsR. Letc € priggR
be such thata, b,a,b) < c. Then(c[1],c[2]) and(c[3],c[4]) are from the same
scc as(a, b). There is a directed r-path froie[3], c[4]) to (a,b). By Lemma 1
this path can be extended to a path frorto some tupled € pry,3,R such that
(d[3],d[4]) = (a,b) and(d[1],d[2]) belongs to the same scc @g1], c[2]), and
therefore(a, b). There is a pattid[1],d[2]) = d; < ... < dy = (a,b) in priyR.
Sinceprp R x {(a,b)} C priy3,R, this path is extendible by, b) to a path in
prigs. R. This implies thata, b, a, b) is maximal.
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CLAIM 3. Foranyi € {1,3,5}, and any(d;, d;+1) € max(pr;;, ;RN (a? x 8%))
there arer; € ¢, j € [6] — {i,i + 1}, such thak € R, where

. dj, ifj=dorj=i+1,
a[]]—{ aj, otherwise

Without loss of generality we may assume that 1. It suffices to prove
that there ares, as with the required properties, since by Lemmari5, R? and
prsqR? are graphs of an isomorphism, it implies, ag € v°.

a b
Observe first that, sincg b | , | a | € prjssR, priss R, we havepr;, R x
a a

{a} C priggR, prigs R.
Let R = prjyRN (a x v9) and

D = {(d',t)) € R" | there areu3, a5 € a’ such thata’, ', a3, as) € prygss R}

Since
a a b a?
b b a b0
g a ] b ) a S a@ 9
b a a a’

this set is non-empty. By the inductive hypothesfsand int’ satisfy the yel-
low connectivity property. By Lemma 14 the same is true ff. Therefore
if max(R") ¢ D, there are(a/,b') € D and (a”,b") € R” — D such that
(', V')(a”,b") is a thin red or yellow edge.
By R’ we will denote the relatiopr; o35 RN (a? xb% x a? xa?). If (a’, 1) (a”, b")
is ared edge then take aayy = (a”, 0", af, a) € priszs Rand anya’ = (d/, V', af, af) €
R’. We have

" / "

a a a
b// b/ b//
m\| = f ’ ) " € R/-
as ay as
a! aj ay
Let (a/,b')(a”,0") be a yellow edge. Takea! = (a”,V" a4, bs),

al) = (a”,b",bs,a) € prigss R such thay, a? € a’. Such tuples exist because
as we observed aboye R x {a} C priy3R, priss R, andaj, af can be chosen
to bea. Letalsoa’ = (d/,b',a},a%) € R'. Then for the tuplda”, b”, af’, a?') =
g(a’,af,al)) € priy3s R we have(a”,b”,af’, a?') € R, a contradiction. Claim 3 is
proved.
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CLAaM 4. For anyl € {{1,2,3,4},{1,2,5,6},{3,4,5,6}}, there areh; €
max(c!), i € [6] — I, such that’ € R, where

a’[z’]— ¢, ifiel,
=\ b, Wil

Without loss of generality lef = {1,2,3,4}. It suffices to show thal; with
the required properties exists. If it is so for sume tuplee shall say that tupla
is a’-extendible

We show first that if some tupla € pryy3,5 R is a’-extendible and there is
a directed r-path frona to b in pr;,4, R, thenb is alsoa’-extendible. Indeed, if
(a,as) € pryggs R for someas € a?, then an r-path from to b can be extended
to an r-path from(a, as) to some(b, bs) in priy3sR. Sincebs is in the same
r-connected component as, it belongs taz?, that implies the claim.

Let S = max(prioR N (a? x b)) andS’ = pryps RN (a x b7 x a? x b9). 1t
will be convinient to denote the tuple, b) by a. Let

D = {b e a’xb’ | thereisa’ € a’ x b’ such thata’, b) € max(S’) and isa’-extendiblg
and
D' = {b € D |there isa’ € a such thata’, b) is a’-extendiblé .

By Claim 3D = pry, RN (a? x b%). If max(D) C D’ then we are done. Indeed,
(a,b) € max(D), hence, there i&’ € a such that(a’,a,b) is a’-extendible,
say, (a’,a,b,a5) € prigsusR. SincepriysR x {(a,b)} C priyyR, there is a
directed path froma’, a, b) to (a, a,b). This path can be extended to a path from
(a’,a,b,a5) 10 (a,a,b,al) in pryys,s R for someal € a’.

Now assume thamax(D) ¢ D’. Claim 3 implies thatD’ # & First take
a’ = a and then extend it correspondingly to Claim 3 obtaining stipieb € D’.
As D is a subalgebra of direct product @f andd?, by the induction hypothesis
and Lemma 14 there at€ € D’ andb” € D — D’ such thab’b” a thin red or
yellow edge.

If b’b” is a red edge then tak@’, b’, as) € prjy345 R for somea’ € a and
as € a’, and(a”,b" af) € prygs.5 R such that € ¥ and consider

n !/ "

a a a
1 / "

b | =f|b],[b
" /

For this tuple we hava’ < a” and therefora” € a andaf € a?, a contradiction.
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If b’b” is a yellow edge then consider the relation

S = prio(RN (A% x {b'} x A?)) Nprip(RN (A% x {b"} x A?))
Nprio(RN (A% x {b', "} x a? x b9)).

This relation consists of all tuples such that(a’, b’), (a’,b”) € pr;,34R and at
least one of them ig’-extendible.

We show thah C pri, (RN (A2 x {b'} x A%))Npryy(RN (A2 x {b"} x A?)).
Since(a, b, a,b), (a,b,b,a) € prigs R, a x prgy R C prigs, R. Then ifd satisfies
the conditiond x prs, R C pryy3, R, andd < e thene also satisfies this condition.
Let F = {c € max(prs,R) | (e,c) € Ry34R}. If there isc € F andc’ €
max(prs, R) such thaiec’ is a red edge then

(@) =7(()- () eprusare

a contradiction. Otherwise if there is a maximal §¢such thatC N F' = &, then
takec’ € C andc € F. We have

(ce> -/ <<S> | @) € Prizg R,

wherec’ < ¢”, and soc” € F, a contradiction again. In the remaining cdse=
max(prs, R), in particular,(a, b), (b,a) € F. Thisimpliese x prgy R C prigs, R.

Therefore, as for som& < a we have(a’, b') is a’-extendible,S # &. Now
let R = RN (S x {b/,b"} x A?) and

E={a’ | (a,b") € priy3, R and(a’, b") is a’-extendiblg.

If max(E) = max(pr;R’) thena’ € max(pr,,R’) for somea’ € a, and we get a
contradiction withb” ¢ D’. Thus assumenax(F) # max(priyR’)

Next we show thaty # &. Suppose the contraryy = &. This means, in
particular, that the relation

S = prigzs (RN (% x 7 x {b’,b"} x a? x b?))

is the graph of a mapping: pr;,S’ — {b’,b”}. Sinceb’,b” € D, both7=!(b’)

and7—1(b”) are non-empty. Moreover, as thereaisc 7~ !(b’) Na and{a’} x

A2 C prygguR, there is alsqa’, b”, bs) € prygzqs R for somebs € v, For any
a” € 771(b”) we have

()6 e

20



Sinceg(b”,b’,b’) = b’ we have thata” = g(a”,a’,a’) € =~ (b’). Now
let as,al € o’ be such thata”,b”, as), (a’,b’,a}) € priyssR. Such a tuple
(a”,b”,a5) exists, ad” € D. Then

" / !/ n

a a a a
g b// , b// , b/ — b// c R/.
as bs as ay

However,a” € 7—!(b’) anda¥ € a’, a contradiction with the assumption on the
structure ofS’.

If £ N max(priyR’) = @ then there ar@’ € F anda” € pri, R’ — E such
thata’ < a”. Therefore(a’,b”, a5), (a”,b",bL) € priyss R for someas € a?,
andbs; € A. Therefore

" !/ "

a a a

1/ /! Z
b - f b b b )
ag as b5

belongs topry 4345 R andal € af. A contradiction.

Now we also need to show th&tn (a? x v%) # . ASE # &, (c,b”,a5) €
prigses R for somec € E andas € a’. As {(a,b)} x prgyR C prigs R,
(a,b”,b5) € prigsqs R for someb; € A. Finally, asb’ € D', there area’ € a and
at € a’ such thata’, b/, al) € pryg345 R. Then the tuple

" /

a c a a
" " 1! /
=g (v ][], [v]],
al as bs af

wherea” € o’ x bv? anda? € a’ belongs tpr, 35 R-

Therefore by Lemma 14 there astc E anda” € pr;, R’ — E such that'a”
is a thin red or yellow edge.

If a’a” is a red edge then we argue as before/4f’ is a yellow edge then ob-
serve thafa’, b”) and(a”, b’) area’-extendible. Moreovera”, b"”) € prygs R
Takeay, as, a3 € R’ such thapr g1 = (a’,b"), priggeas = (a”,b’), priggias =
(a”,b"), anda; [5], a3 [5] € a’. We get

/ 2 " "

a a a a
9(317 as, a3) =g b” 3 b/ ; b” = b” € R7
ay [5] az[5] a3[5] ag'

for someas € a’. A contradiction.
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Observation 1 Since(a, b, a,b,b,a) € Rand(a’,b,a,b,a,b) € R for somed’ €
a®, v € b9 by Claim 4,{(a,b)} x prsgR C pryge(R N (a? x b9 x pryyseR).
The same holds for any combination of pafiis 2}, {3,4}, {5,6}, of coordinate
positions.

CLAaM 5. RelationR’ = RN (a x a x a) is a subdirect product di, a, anda.
Moreover, any tuple froma x a is extendible by a tuple frora.

Let R = pryy3, R N (2 x A). We show that every € R can be extended by
atuplea’ € a. By Observation 1 we know th@fa} x a) U (a x {a}) C C =
{b € prygzsR | (b,d) € R,d € a’ x b°}. Show thag x a belongs to this set. Let
B={ceal{c}xaCC} If B+#a,thereare € Bandc € a— B such that
cc’ isared edge. LetalsB’ = {¢" € a| (¢/,c”) € C'}. Again asB’ # a there
arec” € B’ andc” € a — B’ such that”c” is a red edge. Then

c c c
<C///> = f <<C///> s <c//>> € R7
a contradiction.

If, for someb € R and somal < a, it holds that(b,d) € R thenevenb ¢ R
is extendible ira. This easily follows from the fact thak = a x a by the same
argument as above.

Now due to directed ry-connectedness therecaeé € prys RN (a’ x b%) such
that ¢ extends toa x a, while ¢’ does not, anac’ is a thin red edge or yellow
edge. Ifcc’ is a thin red edge then we quickly get a contradiction. Ingdéetd
(b,c),(b’,c’) € Rwhereb € a x a. Then

b// b b/
() =) (&)=

whereb < b”, and sob” € a x a.

Suppose thatc’ is a thin yellow edge. Sét’ = RN(a? xb? xa? xv9 x {c,c'}).
It is easy to see that N max(pryR’) # @ anda N max(pry,u k') # <. Indeed,
by Observation h € pr;, R, and ifa ¢ max(pr;,R’) then there i@’ with a < a’
anda’ € max(pryR’). Howevera’' € a.

Let

D/ = {b S pr34R/ | (d,b) S pr1234R/, fOf d S a, and(b,c/) S pr3456R/}, and
D = {bepry,R|(d,b,c)e R, fordea}.

Again by Observation ID # &, and by the assumptiomax(D’) € D (as is
easily seem € D’, soan D’ # &). On the other hand, b € D thenFt(b) C D
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(hereFt(b) is computed iprs, R'). Therefore there are, b’ such thab € D and
b’ € D' — D, andbb/’ is a thin yellow edge. Note that for aye anpr;, R’ with
(d,b’) € priy3 R we have(d,b’,c) € R'.

SetR" = R'N(a’ x b? x {b, b’} x {c, c’}). Observe thatnax(pr;,R")Na #
. Indeed,(b, ¢’) is extendible by somd € a. Then we argue as before.

Set

E' = {demax(pripR") | (d,c) € prigseR”, (d,b’) € pryg R}, and
E = {d € max(priyR") | (d,b’,c) € R}.

Note thatE # &, sinceb’ € D’. Moreover, ifd € FE thenFt(d) C E (here
Ft(d) is computed irpr;, R”). Observe thainax(E’) € E. Indeed, otherwise by
the choice ofb we have(e,b,c’) € R for all e € Ft(a) (computed inE’), so,
(e,c') € prigseR” for all e € Ft(a). Also, asb’ € D/, it holds that(e,b’) €
priy34 R” for all e € Ft(a), an by the choice oD’ we have(e,b’, c) € R for all
e € Ft(a). ThusFt(a) N max(E’) # &, andFt(a) N E # & would contradict
the construction of.

Therefore there ard,d’ such thatd € £, d’ € £/ — E andd,d’ is a thin
yellow edge.

We have:(d, b’, ¢’) € R by the choice ofl; (d’,b,c’) € R, becauséd’,c’) €
prigseR” and(d’, b’, ¢’) ¢ R by the choice ofl’; finally, (d’,b’, ¢) € R, because,
(d’,b’) € pryg3,R” and(d’,b’,c¢’) ¢ R. Now

d’ d d\ [d
b|=g||b]|,.[b],[b]]eRr,

c c c c

a contradiction.
Finally, sincea x a C pry,34 R by the standard argument we can show that any
tuple froma x a is extendible by a tuple frora.

CLAM 6. IfaxaxaCR.

Let @ be the subalgebra a® generated by? N (a x a x a). By Claim 5
a x a C prigg,@Q, prasse@, Prisse@- Sincea x a is strongly r-connected we can
apply Lemma 13. O

In the rest of this section we show that there is a thin yelldgesbetween some
elements of any two maximal scc’s &f We call such scc’gellow connectedWe
first need an auxiliary lemma.

Lemma 17 Letd be a congruence of and A, B elements of\ /4. Then

(1) if A < Bthen for anya € A there isb € B such thatub is a red thin edge;
(2) any maximal element of A/, contains a maximal element &f
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Proof: (1) Takea € A and anyc € B. Thenb = f(a,c) € B andab is a red
edge.

(2) Takea € A and any maximab € A with a < b. Clearly, A = a? < % in
A/g. SinceA is maximal, we also havif < A in A/,. By part (1) of this lemma,
it means that there is a directed r-path fréro a certain element € A. Asbis
maximal,d is also maximal. 0

Next we show that the relation of yellow connectivity is tsdive.

Lemma 18 Suppose elementsb are connected with a directed ry-path contain-
ing only maximal elements. Then there afec a and?’ € b such thata't’ is a
thin yellow edge.

Proof: We prove by induction on (1) the size @f, and (2) the number of
yellow edges in the directed y-path connectingndb. Thus, we may assume that
A = Sg(a,b). Moreover, we may assume théatis simple. Indeed, i is a proper

congruence of\, then there are’, v’ such thata’? € a?, b € b9, anda®¥? is a
thin yellow edge inA /4. This means b’ is a yellow edge (not necessarily thin) of
Gr(A). By Lemma 16 there are” € o/, b’ € ¥ such that” is a thin yellow
edge.

We also assume that is minimal among aIgebraSg(a v') for ' € a,
Y € b. Thus,A = Sg(a’,b') foranyd’ € @, b/ € b. Consider relation? gen-
erated by(a,b) and (b,a). Again we assume that this relation is such that for
anyad € a, bt € bwith (d/,V),(b,d’) € R the relation is also generated by
(', V), (t,a’). As usual this relation defines a tolerance &nop = {(c¢,d) |
there ise such thate, ¢), (e, d) € R}. We consider two cases.

Case 1. Ris a graph of an automorphism.

Leta = a1, and leta}as, . . ., aj_,a; = b be the yellow edges from the ry-path
connectingz andb, and alsaz, € a; for all i. Now we proceed by induction dn
If Sg(a,ar_1) # A then by induction hypothesis there afec a anda” € aj,_
such thata’a” is a thin yellow edge. ISg(a,a;_1) = A thena anda;_; are
connected with an ry-path with fewer yellow edges and aggirthie induction
hypothesis there a€ € a anda” € a;_; such that’a” is a thin yellow edge. In
either cases we can assume- 3.

So suppose’c andc’t’ are y-edges and € ¢ (and bothc andc’ are maximal).
If the relation generated hy', v'), (V/, ') does not satisfy conditions of Case 1, we
replacea with ', b with &’ and prove the result under Case 2. Otherwise we assume
a’ = a,b = b. There is a term operationgx, y), r(x,y) such thap(a,b) = ¢
andr(a,b) = . Letd = p(b,a) andd’ = r(b,a). SinceR is an automorphism
mappingda to b andb to a, bd andad’ are yellow edges. Set

g,(l'vyv Z) = g(x,p(:ﬂ,y),p(w, Z))
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It is not hard to see that
d(a,a,b) =g (a,b,a) =a, ¢ (ba,a)=d.

Let @Q be the relation generated Wy, a,b), (a,b,a), (b,a,a). It is easy to see
that({a} x A) U (A x {a}) C pry »Q = pry 3Q = pry 3Q. Let Q' be the relation
generated by2N(axaxd). For this relation we have: (@)1 3Q" = pri Q' xpr3Q’
and pry 3Q" = pry@’ x prg@’ (it follows from Lemma 5 and the observation
above), and (bJi x @ C pry,Q. Thereforemax(pr,Q N (@ x @)) = @ x @,
and so is strongly r-connected. By Lemmapii3,Q x d C @’. In particular,
(a,a,d) € Q.

Similarly, (d',a,a), (a,d’,a) € Q. Finally applyingg to these three tuples we
get(a,a,a) € @, which implies that there is a majority operation fn b}.

CAsE 2. R is not the graph of an automorphism.

SinceA is simple this means thatis a connected tolerance. There are classes
of this toleranceDq, ..., Dy, such thata € D¢, b € Dy, and for each there is
e; such that{e;} x D; C R, andD; N D;11 # <. Again we have two cases to
consider.

SUBCASE 2A. For some, D; = A, or, equivalentlyk = 1.

Let {e} x A C R. If Sg(a,e) = A, then, aja,b), (e,b) € R, pair (b,b) is
also inR. This means that there is a term operatjgn, y) such thatp(a,b) =
p(b,a) = b, and sau < b, a contradiction.

Suppose thabg(a,e) # A andSg(b,e) # A. By induction hypothesis there
aread’ € a, €,¢” € e, andb/ € b such thata’e’ ande”b are thin yellow edges.
By Lemma 7{¢’} x A C R, in particular,(¢’¢”) € R. By symmetricity, also
(e”,€¢') € R. Sincee x e C R, this pair is a maximal element iR. Again by
Lemma 7 we havéai x b) U (b x @) C R. In particular(a’,b'), (¥, a’) € R, by the
assumption made, these two pairs genefateThere is a term operation(x, y)
such thap(a,b) = ¢, p(b,a) = €”.

Consider 6-ary relatiofp generated bya’, v/, d’,b',b',d), (a', V',V ,d’,d', V'),
(t',d',a',V,ad' V). Asin Case 1let/(z,y, z) = g(z,p(z,y),p(z, 2)). Applying
¢ to those three tuples we gét’,v’,d’, b ¢’ ") € Q. Leta = (d/,') and
e = (¢/,¢"). As before({a} x A%) U (A* x {a}) C pry534Q = Pr3s56Q =
pry 2 56Q. LetalsoQ’ be the relation generated N (a x a x €). Observe that
(@) pry2,56Q" = pry Q" X prs Q" andprs 4 5 Q" = prs ,Q' X prs Q' (it follows
from Lemma 5 and the observation above), anda(y)a C pr, 5 3 ,Q. Therefore
max(pry 3 4Q N (a xa)) =a x a, and so is strongly r-connected. By Lemma 13
pry034Q" x € C Q. Inparticular,(a,a,e”,¢') € Q.
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Similarly, (¢”,¢',a,a),(a,e¢”,¢’;a) € Q. Finally applyingg to these three
tuples we geta,a,a) € @, which implies that there is a majority operation on
{d',V'}.

SUBCASE 28B. For everyi, D; # A.

In this case use yet another induction parameter, the numbédren Sub-
case 2a gives the base case for induction. Chapse D;,_1 N D; anda; = a.
By Lemma 8a; can be chosen maximal. $g(a, ar) # A then by induction hy-
pothesis there aré’ € a andaj, € @ such thata’a), is a thin yellow edge. If
Sg(a,ar) = A then again the same true by induction hypothesis, asda; are
connected with shorter chain gfclasses.

If Sg(b, ex) # A then there i9' € bande’ € ¢, such that'e’ is a thin yellow
edge and there aw€’ € @, b” € b with (¢/,a”), (¢/,b") € R. By the assumption
madeSg(a”,b"”) = A therefore for anyl € A either(V/,d) € Ror (¢/,d) € R.
§ince(a, b) € R, argueing as in the proof of Lemma 6 we obtairx b C Rand
bxacCR.

Suppose first thate’, ¢’) € R. Then as before it is not hard to show that
{¢'} x ¢ C R. If Sg(a”,¢’) = A then, since(t/,a”),(V',¢’) € R, we have
Subcase 2a. So, suppdsg(a”’, ') # A. Then there are” € 12” ande” € ¢’ such
thata”e” is a thin yellow edge. As we showed befo(é,x b) U (b x @) C R,
in particular, (a”,b"), (v",a") € R. By the assumption made these two pairs
generatek, and we can assumé’ = a, b’ = b.

There is a term operatign(z, y) such thap(a, b) = €’ andp(b,a) = €¢'. Con-
sider 6-ary relatiort) generated bya, b, a, b, b, a), (a, b, b, a,a,b), (b,a,a,b,a,b).
As in Case 1 ley/(z,y,2) = g(x,p(x,y),p(x, z)). Applying ¢’ to those three
tuples we geta,b,a,b,¢’, ") € Q. Leta = (a,b) ande = (¢/,¢"). As before
({a} x A?) U (A% x {a}) C pry34Q = Pr3456Q = pry256Q- LetalsoQ' be
the relation generated iy N (a x a x ). Observe that (@)1 5 5 4Q" = pry ,Q’ X
prs Q' Pry 4 56Q" = prs3 Q" x prj Q' (it follows from Lemma 5 and the obser-
vation above), and (l§ x a C pry 5 5 4Q. Thereforemax(pr; 53 ,Q N (A x A)) =
a x a, and so is strongly r-connected. By Lemmap@3,5,Q" x ¢ C Q. In
particular,(a,a,e”,¢') € Q'. Observe thate’,¢") and(e”, ¢') are both maximal
in R = pr; 4Q, sincee’ x ¢/ C R.

Similarly, (¢”,¢',a,a),(a,e”,¢’;a) € Q. Finally applyingg to these three
tuples we geta,a,a) € @, which implies that there is a majority operation on
{a,b}. O

Leta € A. Thedepthof a, denoteddep(a), is the maximal numbet such that
there is a directed r-path fromto a maximal element that goes through exagtly
scc of Gr/(A). In particular,a is maximal if and only ifdep(a) = 1.

An ry-path is said to bd-stageif it has the formay, ..., ax, axr1,- .., am,
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wherea; > ay > ... > ay, pair agaisq IS a thin yellow edge; and;,; <

... < an,. We also allowO-stagepaths defined in a similar way except that such
a path does not contain a yellow edge and< ... < a,,. The depth of 1-
stage ry-pathd = aq,...,ax,...,ay...,ay,, denoteddep(A), is the maximum
of dep(ag),dep(ax+1), and that of a O-stage path dep(ay). Elementsa;, and
a1 Of a 1-stage path we will sometimes cdistinguished

Lemma 19 It suffices to prove the result far,b € max(A) under the following
assumptions:

(1) a, b are connected with a 1-stage or O-stage ry-path;

@ ifa=ay,...,a5,ar41,-..,a, = bis al-stage path connectingandb, then
dep(ax) + dep(ag+1) > 2; R

(3) A = Sg(d’, V') foranyd’ € @ andt’ € b;

(4) Sg(a, b) is simple.

Proof: (1) Clearly, every ry-path can be split into 1-stage or @stiiagments
(with a possibility thatc = 1 or £ + 1 = m). However, we also need to guarantee
that the ends of those fragments are maximal elementsu;Let. , a, agi1,.. ., a0m =
Ay eees sy g5, be an ry-path andas,...,ag,apq1,. .., 0, and
Ay ooy, agy ..., a,, are 1-stage ry-paths. Choose a maximal element
such that there is a directed r-path, = ¢; < ¢ < ... < ¢ = ¢. Then
Ay ooy Ay Ay 1y Uy €2, - -, ¢ = CANAC = ¢, .., Co, 01 = @Y, Ly, Ay, - -
are 1-stage ry-paths whose ends are maximal elementsfitesuo prove that, ¢
andc, b are connected with a directed ry-path. Finally we apply Leni@. For
0-stage paths or combination of 1-stage and 0-stage pa&tlasgbhment is the same.

(2) If dep(ay) + dep(ay) = 2, thenay anda, belong to the same scc’s ag
anda,,, respectively. Thusy; is connected ta,,, with a directed ry-path.

(3) If Sg(a’, ") C A then by the induction hypothes$g(a’, b’') has the yellow
connectivity property. Let”, b” be maximal elements &g(a’,v’) such that”
Ft(a') andb” € Ft(b'). Thena” andb” are yellow connected ifig(a’, ). Since
a,b are maximal andz < d”, b < 1V’, elementsa,a’ andb, b’ are strongly r-
connected irGr(A). Thusa, b are yellow connected.

(4) Let 6 be a non-trivial congruence df = Sg(a,b). Then[A/q| < |A],
thereforea? andb? are yellow connected. In other words there is a directed ry-
patha’ = Ay, ..., A, = b’ in Gr(A/y) from o to v? that goes through maximal
elements and contains at most one yellow edge. We shovi thatre yellow con-
nected by constructing a directed ry-pathiiras follows.

(@) Leta’ be an element maximal id; and such that, < «’. Elementsz anda’
belong to the same scc 6ft/(A), so we choose a directed r-path frento o’ as
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the initial part of our path.

Suppose that a path is constructed fromo a certain element € A; such that is
maximal in4;.

(b) Let A;A;+1 be a yellow edge. Observe thatix(A4; U A;1+1) = max(4;) U
max(A;+1). Foranyd € A;;1, maximal inA;1, the paircc is a yellow edge, but
not necessarily thin. By Lemma 16, there dre A;, d € A;1 such thatdd’ is
a thin yellow edge, and, d’ are maximal in4; and 4, 1, respectively. Moreover,
d € Ft(c) and a directed r-path fromto d in A;, and therefore im\.

(c) Let A; < A;11 Gr(A/y). Since the two classes belong to the same scc of
GI"(A) there is a directed r-path frO‘ﬁlL'+1 to A;. LetA; = By, Az’—l—l =B,By,...,B,_1,By =
A; be adirected r-path connecting with A; 1, and them4;,; to A;. By Lemma17(1)
foranyj € {0,...,n — 1} and anyd € B, there isd’ € Bj; such thatdd’ is

a thin red edge. We construct a directed r-pafhd,, . .. as follows. Setly = c.

Then if d, € max(B;) then setd,,; to be an element iB3; ; (04 ») SUCh that

d.d,y1 is a thin red edge. Otherwise sét, 1, ..., d,. s to be a directed r-path in

Bj from d, to a maximal element, ; in ;.

Since 4; is finite there are, ¢, p < ¢, such thatd, = d, is a maximal element
in A;. Also letd, be such thap < v < g andd, is a maximal element aofl; ;.
Since bothc andd,, are maximal elements of;, by induction hypothesis sccs
anddAp are yellow connected. By Lemma ﬁ8anddAp are yellow connected. The
same holds fon andqu. O

Leta, b are connected with a 1-stage or O-stage pbth a1, ..., a0k, ar11, .- -, 0m
with @ = a1,b = a,, anday, a;11 being the distingished elementsAfis 1-stage.
We distinguish several cases:

(a) Ais 1-stage, andep(ax) > 1, dep(ag+1) > 1;

(b) Ais 1-stage, andep(ay) > 1,dep(axy1) = 1, 0rdep(ax) = 1, dep(ag+1) >
1|

(c) Ais 1-stage, andep(ay) = 1,dep(ag4+1) > 2, ordep(ay) > 2,dep(ag4+1) =
1|

(d) A is O-stage,u # v, whereu denotes the number of scc’s on the path
ai,...,a, andv denotes the number of scc’s on the path. .., a,,; ob-
serve that in this casg v > 1 and either > 2 orv > 2,

(e) AisO-stageyp =v > 2,

(f) AisO-stagey =v = 2.
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We prove by induction on the depth of the pathddh(.A) = 1 then the result
follows from Lemma 19(2) that gives the base case. Then wie faand 0-stage
paths so that paths of lower depth precede paths of highdén,deml 0-stage paths
precede 1-stage paths of the same depth.

An elementc is calledleft sub-bottom(with respect to ry-patha, ..., a,,) if
¢ € ap, Whereay is the last element witlt’ < & and such thatlep(ay/) <
dep(ay). Similarly, d is calledright sub-botton{with respect to ry-path;, . . . , a,,)
if d € ap, wherea is the first element witlf < ¢’ and such thatlep(a,) <

dep(ay).

Lemma 20 Letc, d be chosen as follows (according to the cases above):

(a) if dep(ax) > dep(ar+1) thenc € ay andd € agq; if dep(ax) < dep(ag+1)
thenc € a;, andd € a,,;

(b) c € a1 andd € ay,;

(c) ¢ € a1 andd is a right sub-bottom element;

(d) if u > v thenc is a left sub-bottom element addc a,,, otherwisec € a; and
d is a right sub-bottom element;

(e)c € a1 andd is a right sub-bottom element;

(f) c € a1 andd € a,,.

Then ifSg(c, d) # A thena, b are connected with a directed ry-path.

Proof:

(a) We assumeéep(ay) > dep(ax1), the second case is similar. Létd’ be
elements maximal i8g(c, d) such thatt < ¢ andd < d'. By inductive hypothe-
sis,¢ andd’ are yellow connected §g(c, d). Let¢” andd” be maximal elements
of A such that! < ¢’ andd’ < d”. Sincec € a3, elemenia; is connected witlal”
with a directed r-path. Lef” =co > ... > ¢, =d > ¢ty11 > ... > Csy = Qg1
be an r-path connecting” with a;.;. This is a O-stage path of depth less than
dep(A).

e As was mentionedy; anda” are connected by a directed r-path.

e ¢’ andd” are connected with the patl, namely,c” = bs,,... by, d1, ..., dy,Cty,y ..., co0 =
d",wheredy, ..., d, is a 1- or 0-stage path Bg(()c, d) connecting’ andd’. Then

dep(A’) < dep(A), sincedep(c’) < dep(ay) anddep(d’) < dep(ay+1). There-

fore ¢” andd” are yellow connected.

e d" anda,, are connected by the O-stage pdth= co, ..., cs, = ag,api1, .., am.

By inductive hypothesis]” andb are yellow connected.

Finally Lemma 18 completes the proof.
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(b) Similarly to the previous case we choased, ¢’,d". Sincec € ai, d € am,
and sod, ¢’ € ay andd’,d” € a,,, there is a directed r-path connectimgwith ¢,
and a directed r-path connectid with a,,,. Moreover, by the inductive hypothe-
sisc¢” andd" are yellow connected.

(c) We consider caséep(ai.1) > 2. Again we choose’,d’,¢”,d”. Thenay

is strongly r-connected witk”. Letc” = by,...,bs = ¢ be an r-path con-
necting ¢’ with ¢’. By induction hypothesig’ andd’ are yellow connected in
Sg(c,d), i.e. there is a 1- or O-stage pat,= di,...,d, = d from ' to d’ in
Sg(c,d). Let alsod’ = bsy1,...,b; = d”, be a directed r-path frond’ to d”.
PathA: by,...,bs = dy,...,dy = bsi1,...,bs, IS @ 1- or O-stage path. Since
dep(d,) < dep(agy1), thedep(A’) < dep(A), and by the inductive hypothesis
¢’ andd” are yellow connected. Finally]” = b;,...,bs11 = d',c1,...,¢, =
dyCytly- vy Cy = Ag,Qpa1, - - -, 0y, Whereey is the cho§en Slib—bottom element,
is a 0-stage path of depth less than thaidofTherefored” andb are yellow con-
nected.

(d) We assume that > v, the casev > w is very similar. Choose’,d’, " as

before. Sincel’ € a,, we do not need to choos#. Patha = aq,...,ap =
bi,...,bg = ,bgt1,...,b, = ¢, wherea;, is the sub-bottom element chosen,
ap = bi,...,bg = ' bgy1,...,b, = " is an r-path fromu, to ¢, to ¢”, is a

0-stage ry-path whose deptbp(ay/) is less then that afl, which equalsiep(ay).
Thereforea and¢” are yellow connected. Then, there is a 1- or O-stage ry-path
" =b,....by = ,c1,...,¢, = d, whose depthmax(dep(c’),dep(d')) <
dep(a). Thereforec” andd’ are yellow connected. Finallyl andb are strongly
r-connected.

(e) Choose’, d’, d” as usual. Elementsandc’ are strongly r-connected. Elements
¢ andd”, as well as, element’ andb are connected with 1- or O-stage ry-paths
of depth smaller thadep(.A) = dep(ay). Thus,a andb are yellow connected.

(f) This case is very similar to case (b). O
Proof:[of Proposition 6] By Lemma 19(1) we may assume thep(ay) +
dep(ay) > 3. We also assume that is a path of least depth.
Choose elements d in each of the cases (a)—(f) as described in Lemma 20. Let
R be the relation generated Iy, d), (d, c). The relationS, 4 = {(c/,d') € A? |
there ise such that(e, ¢’), (e, d’) € R} is a tolerance of\, because, by Lemma 20
Sg(c,d) = A. SinceA is simple we have two cases.

Case 1. For some’ € ¢, d' € d relation Sy ¢ is non-trivial, and therefore is a
connected tolerance.

For convenience we rename= ¢’ andd = d'. In this case there is a sequence
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a =dy,...,d, = bsuch thatd;,d;+1) € S foranyi € [n — 1]. By Lemma 8
the d; can be chosen to be maximal, if we allow the last element efgbguence
to belong to the same scc asather tharb itself.

There are two possibilities.

SUBCASE 1A. For anyi € [n — 1] the algebrég(d;, d;+1) does not equah.

By the inductive hypothesis, for anyany two maximal scc’s n$g(d2, dit1)

are yellow connected. Sineg andd,;; are maximal inA, scc sd“d,ﬂ are also
yellow connected.

SUBCASE 1B. For some;, Sg(d;, d;+1) = A.
In this case there is € A such that(e,a), (e,b) € R. SinceR is symmetric,
this means that{e} x A) U (A x {e}) C R. Using the same arguments as before

we may assume thatis maximal. Indeed, i€’ is such that < ¢’ and(¢’,d’) € R
then set

()= (&) (@) o0 (3) =7 (G) ().

wherea” € @, b" € b. There is a directed r-patf’ = a1, ..., as = a. We set

()= () () =r(() ()

Thus(e’,a) € R. Similarly, (¢/,b) € R.

Suppose first that botBg(c, e) andSg(e, d) are smaller thad\. Takecd, d’,
maximal elements ifig(c, e) with ¢ < ¢/ ande < d’, andc”, d”, maximal elements
in Awith ¢ < ¢/, d’ < d”. By induction hypothesig andd’ are yellow connected.
Therefore, as before is yellow connected t@. Similar arguments are valid for
Sg(e,d).

Suppose thabg(c,e) = A. Then(e,d), (e,d) € R and hencgd,d) € R.
Thuscd is a thin red edge, a contradiction with the choicecod. In the case
Sg(d,e) = A the argument is similar.

CASE 2. Sy g istrivial forall ¢ € ¢, d' € d, and thereforeR is the graph of an
automorphismr of A that maps: to d andc to d.

CLAIM . Foranye € A, dep(m(e)) = dep(e).

The claim follows from easy observation that the image (aptfeimage) of a
directed r-path is a directed r-path.

We consider the seven cases corresponding the cases (@yrid)emma 20.
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SUBCASES2A, 2C, 2D, 2E. In these cases by Claidep(c) = dep(d). However,
dep(c) = 1 while dep(d) > 1 (or in cases 2a, 2b, 2c it can be tldap(c) > 1 and
dep(d) = 1).

SUBCASE 28B. dep(ai) = 1, dep(ak+1) = 2 ordep(ax) = 2, dep(ag+1) = 1.

Suppose first thadep(ay) = 1, dep(ax+1) = 2. We chooser’ = ay, (S0,d’ €
a1), andu € ayy; so thata'u is a thin yellow edge. By Lemma 2 (a’,b) = A,
by the conditions of Case &, ; is the graph of an automorphism, and we may
replacea with «’. There is a term operatiop(z,y) such thatp(a,b) = wu; let
w = p(b,a). Sincer is an automorphism takingto b andb to a, we have thatvb
is a thin yellow edge. Set (z,y, 2) = g(z, p(z,y), p(z, 2)). Theng'(a,a,b) = a,

g (a,b,a) =a, ¢ (b,a,a) = w.

Consider ternary relatio@ generated by triple&, a, b), (a, b, a), (b,a,a). As
usual,(@ x A) U (A x @) C pry,Q,pr; 3Q,pry3Q. Let alsoQ’ be the relation
generated by) N (a x a x a). Observe that)’ is nonempty. Indeed] < q; let
d=di,...,d, € abeanr-path, and l€u;, b;,d;) € Q be triples extending the
d; such thatu; = by = a. Then settinga}, b}, d;) to be(a, a,d), and

a;y a; Qit1
b;-i-l = f b; ) bi+l
diy1 d; diy1

we obtain a tupl€al,,b.,,d») € QN (a x a x a). By the standard argument
(@axA)U(Axa) C pry »Q', pry 3Q’, pry 3Q'. Now Lemma 13 implieg x a xa C
Q. Therefore there is a ternary operatighsuch thaty”(a, a,b) = ¢"(a,b,a) =
g"(b,a,a) = a. Applying the automorphism we getg” (b,b,a) = ¢"(b,a,b) =
g"(a,b,b) = b. Thusa, b is a thin yellow edge.

The caselep(ay) = 2, dep(ag+1) = 1 is similar.

SUBCASE 2F. By Lemma 20 we can assume that there is a;, such thatu < b
(and changing if necessary). Take a term operatipfx, y) such thap(a,b) = u
and setw = p(b,a). Due to automorphismr we havew < a. Let¢'(z,y,z) =
f(p(y,x),p(z,x)). Asis easily seemy(a,a,b) = ¢'(a,b,a) = a andg’(b,a,a) =
u.

Consider ternary relatio@ generated by triple&, a,b), (a, b, a), (b, a,a). As
usual, (@ x A) U (A x @) C pry,Q,pr;3Q,pry3Q. Let alsoQ’ be the rela-
tion generated by) N (a x a x a). Similar to the previous casg’ is nonempty.
By the standard argumef@ x A) U (A x @) C pry ,Q’,pry 3Q’, pry3Q’. Now
Lemma 13 implies: x a x a C . Therefore there is a ternary operatigrsuch
thatg'(a,a,b) = ¢'(a,b,a) = ¢'(b,a,a) = a. O
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6 Quasi-2-Decomposability

Recall that ans{-ary) relation over a sefl is called2-decomposablé, for any
tuplea € A", a € R if and only if, for anyi,j € [n], prj;a € pr;R. 2-
decomposability is closely related to the existence of nitgj@olymorphisms of
the relation. In our case relations in general do not havejarityapolymorphism,
but they still have a property close to 2-decomposabilitg 34y that a relatiof,
a subdirect product ok, ..., A,, is quasi-2-decomposahléf for any elements
ai,...,an, a; € max(A;), such thata;, a;) € max(pr, ;) for anyi, j, there is a

tupleb € R with (b[i], b[j]) € (a/i,a\j) for anyi, j € [n].

Proposition 7 Any relation invariant undeA is quasi-2-decomposable.
Moreover, ifR is ann-ary relation, X C [n], tuplea is such thata[i], a[j]) €
max(pr; ;) for anyi, j, andprya € max(pry R), there is a tupleb € R with

(bli],b[j]) € (afi],alj]) for anyi, j € [n], andpryb = prya.

Proof: Let a be a tuple satisfying the conditions of quasi-2-decompitisab
By induction on ideals of the power set pf] we prove that for any ideal there
is &’ such that(a’[s],a’[j]) € (am]), and for anyU € I prya’ € max(pryR)
andpr;;a’ € prjya. The base case, the ideal that consists of all at most 2-atsme
sets, sefX, and its subsets, is given by the tuple

Suppose that the claim is true for an idéasetl’” does not belong té, but all
its proper subsets do. L&t be the set of all tuples such thapr;;c € max(pry R)
andpr;;c € prya for everyU € I. If atuple belongs t® it is said tosupportD.
We show tha contains a tupld with pry;;b € max(pry R).

CLaM 1. If b € Dandc € Rthenb’ = f(b,c) € D.

Clearly for anyU € I pryb’ € pryR. Thenb < b’ that impliespr;;b’ €
pryb foranyU € I.

Assume that?’ = {1,...,¢} and fixb € D. We prove the following state-
ment:

Let c € D be such thapr;;c € pTU\b forall U € I and@ C max(pry,R) such
that for anyU C W there iscy € R with prycpy = pryyc andpryycpy € Q. Then
there isd supportingl U {W} such thapry,d € @ andpr;;d € prybforU € 1.

We prove the statement by induction on the sum of sizes ofyuprajections
of Q. If one of these projections is 1-element then the statetnierdlly follows
from the assumptiompr;;c € @ for U including all coordinate positions whose
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projections contain more than 1 element. So suppose thatdtement is proved
for all relations with unary projections smaller thén

By assumption there akg, . .., ¢, € Q with pryy_g;,¢; = pryy_g; c. Clearly
these tuples can be chosen such that is maximal.

Suppose that for somethe unary projectiomr,;Q # Sg(c[il, c;[i]). Assume
i = 1. Then set

Q' =Qn <Sg(0[1],cl[1]) < 11 Sg(ffi])) :

iEw—{1}

We show thatc can be changed so th@' satisfies the conditions of the state-
ment. Ifpry,_gqycis not maximal inpryy,_13,Q’ then take an r-pathry,_ ¢ =
bi,...,by in pry,_(;3Q" so thatby is maximal. Then leb; form an r-path
in R such thatpry,b; € Q" andpry,_g3b; = b;. Then we seld; = c,
andd;;1 = f(d;,bj,;). By Claim 1d; € D; moreover, for anyy ¢ W,
pryd C prpy @', and for anyU € I, pryyd € prge = pryb. Continuing the path if
necessary we ensure th#ffl] is maximal inpr;Q’. Then just apply the induction
hypothesis.

Let c; be chosen such th8g(c[], c;[:]) are minimal possible. We will prove
thatc € (). Replacing® with relation

Q'(x,y,2) = Jxs, ..., 2,(Q(z,y, 2,23, ..., 2n) A(z3 = c[3])A.. . Az, = c[n)])

@ can be assumed ternary. Dét= {i € [3] | ¢;[i] & c/[\z']} andZ = [n]-Y =
{i € In] | ci[i] € c/[\z']}. Without loss of generality assun# = {1,...,/¢} and
Y={(+1,...,n}.

CLam 2. (c1[1] x c[2] x ¢[3]) U (c[1] x c2[2] x e[3]) U (c[1] x c[2] x e3[3]) € Q.

Observe that for any, j € [3], (c/[\i] X c/[j\‘]) U (c/[\i] X c][ 1) € pr; ;Q. Indeed,

(cfi] el1]). (eli]. &; [i]) € pr:;Q implying {efi]} x pr,Q C pr, , and then ap-
plying Lemma 7. Then the condltlons of Lemma 13 are satlsﬁlnzdrfe relation

—

Q' generated byz N (e1[1] x ¢[2] x [3]): e1[1] x ¢[2] € pry,Q', e[1] x ef3] €

pry 3Q'; pro 3Q’ is generated by[ | x [ |, which is strongly r-connected; finally

(e1[1], ¢[2], €[3]) € Q'. Hence by Lemma 13 we havg[ ] x c[2] x c[3] € Q.
Forc[ ] x C2[2] X c[ ) andc[ | x c[2] X C3[ ] proof is similar.

Note that ifZ # @ then we are done. Suppose that <. By Proposition 6
for eachi € [3] there areh; € c[] andc; € cz[] such thatb;c; is a thin yellow
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edge. By Claim 2 ¢y, by, b3), (b1, ¢, b3), (b1, b2, c3) € Q, therefore

() (G) ) )

Again the conditions of Lemma 13 are satisfied for the refaf) generated by

RN (cfl] x cf2] x e[3]): eft] x ef2] € pry 2@, cft] x f3] C pry 3Q’; pro3@Q’ is
generated byc/[2\] X c/[g] which is strongly r-connected; finallp;, b2,b3) € Q'.
Hencec/[T] X c/[2\] X c/[?T] C @, in particular,c € Q.

To finish the prove it suffices to use the fact that the resyltiple b is such
thatpr v b € prya. There is an r-path ik that starts ab and ends ab’ such that
pryb’ = prya. As is easily seen, tuplb’ satisfies all the remaining conditions.
O

7 Proof of Theorem 1

In this section we prove Theorem 1 in the case of multi-soptetblem instances
over arbitrary algebras fronfF(A). LetP = (V;F(A);d;C) be a 3-minimal
problem instance. Fou,v,w € V by S, Sy v, Suvw We denote sets of par-
tial solutions toP on {u}, {u, v}, {u,v,w}, respectively. We show th& can be
transformed to another 3-minimal problem instance whitisféas some additional
conditions.

Proposition 8 Let? = (V; F(A); d;C) be a 3-minimal problem instance without
empty constraint relations. Letc V and B be a maximal scc dfr’(A;(,). Then
the problem instanc®, z = (V; F(A); §;C’), where

e for eachC = (s,R) € C there isC’ = (s,R') € C' whereR’ contains
all tuplesa from R such that for anyu,w € s there isc € Sg(B) with
(Caa[u]7a[w]) € Sv,u,w-

satisfies the following conditions
e P’ is 3-minimal, and has no empty constraint relation;

o if P’ has a solution, thef® does.

Proof: The second claim of the proposition is straightforward fritra con-
struction.
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Take any variables,y,z € V. The set of partial solutions &, g on {z},
{z,y}, and{z, y, 2} will be denoted by5;, S; ,, andS;, , ., respectively. Let also
Sy, denote the set of maximal elements from

{(a,b) | suchthatd,a,b) € S, , for somed € B}.

CLAM 1. Foranyz,y,z € V — {v} and any(a,b) € S}, there isc such that
(a,c) € S/, and(b,c) € S ..
Consider the following relation

R(x1, @2, 23, x4) = u(Sy 2.2 (x1, T2, u) A Sy y (3, T4, ).

Let d be the element oB,, such thatd, a,b) € S, ., and leta = (d, a,d, b). We
show thatpr; ;a € pr; ;R foranyi, j € [4]. If i = 2, j = 4 or the other way round
then we sety to be an extentior of (a,b) in S, ., andz, 3 to extentions of
(a,e) and(b,e) in S, , . andS,, ., respectively. Ifi =1, j =2o0ri=3,j =4
then sety to be an extentiom of (d,a) or (d,b) in S, . . andS, , ., respectively.
Then extenc: to a tuple froms, , . or S, . ., respectively. Ifi = 1, j = 4 or
i = 3, j = 2 then extendd,b) or (d,a) by an element to a tuple inS, , . or
Sv.a,z, espectively. Then set, (resp.,z4) to be a value extendingl, e) in S, .
(resp.,Sy,-,y), andzxs (resp.,z1) to be a value extendingd, b) (resp.,(d, a)) to
a tuple inS, ., (resp.,S,. ). Finally, if i = 1, 7 = 3 then choose: so that
(d,e) € S, . and extend this pair to tuples froff) . , andS,, ...

By Proposition 7 there ib € R such thab[2] = a[2] = a, b[4] = a[4] = b,
b[1],b[3] € d = B, and(b[i],b[j]) € (am]). Therefore there is such that
(b[1],a,c) € Sy and (b[3],b,c) € S,y ., Which implies(a,c) € S, and
(b,c) € Sy .. The claim is proved.

CLAIM 2. (1) For anyz,y € V — {v} and any(a,b) € S;,, there is mapping
¢V — Asuchthatp(x) = a, p(y) = b, ¢(v) € B, and(p(u), p(w)) € S,/ ,,
foranyu,w € V.

(2) Moreover, ify) is a mapping fronUU C V satisfying the conditions above, then
¢ can be chosen such that; = 1.

LetV = {v,...,v,} andv = vy, x = vy, y = v3. By induction oni we
prove that a requiregh; can be found od = {v,...,v;}. Fori = 3 the claim
follows from the assumptions. So, suppose it is proved fofake p; satisfying
the conditions o and consider the relation given by

R(zy,...,x; —Ely/\S{)'ﬂvZ+l
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By the inductive hypothesis and Claim 1, for giyy € [i| we have(¢(v;), ¢(vk)) €
pr; k. By Proposition 7 there ia € R such thata2] = a, a[3] = b, and

(alj],alk]) € (@(Umvk)) for anyj, k € [i]. This means that there issuch that

(alj].c) € S ., forall j € [i]. Observe that is a maximal element of,, , .

For anyj, ke [i] there isc” € csuchthatp(v)), ) € S) . and(p(vg), ) €
Sy vi.,+ Indeed, sincea[j], a[k]) € (cp(vj/),?(vk)), there is a directed r-path

from( [7],alk]) to (¢(v;), ¢(vg)). This r-path can be expandede to an r-path from
(a[j], alk], ¢) to (¢(vj), go(vk), ) for somed with ¢ < ¢'.

Let B be a minimal subalgebra &g(c) such that for some maximal sc¢
of B and for anyj, k € [i] there is¢ € C such that(¢(v,),c) € SI and

Vj, Vi1

(p(vr), ') € Sy v, ClearlyB can be chosen maximal generateddbyLet R;
denote the binary relatiodg(S,/ N(e (fuj) x (')). Take a maximal congruence

Vj,Vit1
0 of B, and letk? = {(d,e’) | (d,e) € R;} for/j\e [i]. By Lemma 9RY is either
the graph of a mapping; : pryR; — B/, or ¢(v;) x pr2R? - R?.
Let U C W be the set of those variables for which Rgf is the graph of
a mappingy; : priR; — B/s. Then for anyj,k € U we havey;(¢(v;)) =
Yr(p(vg)). Therefore there is é-block B’ such that for anyj, & € [i] there is
¢ € B’ such thatp(v;),d) € S and(p(vg),d) € S

Vj,Vi+1 Vk,Vi41"

Consider the relation given by
R/(:Eb o axi) = EIy]B/(y) A /\ S{)/J,vz+1($j>y)‘
j=1
By the what is shown above, for agyk < [i] we have(yp(v;), p(vr)) € pr; R
By Proposition 7 there ia’ € R such that’[2] = a, a'[3] = b, and(a'[j], a[k]) €
(e(vj), cp( ) for any j,k € [i]. This means that there is' € B’ such that
(@[], " e S forall j € [i]. Clearlyc” is a maximal element. As before, for

Vj,Vi+1

anyj, k € [i] there isc” € ¢ such that(p(v;), ") € Sy, ., and(p(vy), ") €
Sop i ...+ A contradiction with minimality ofB.

Finally, if B is simple then led € C denote the element(¢(vy)), which
is common for all¢ € U. For anyj,k € [i] consider the relation generated by

Sv; i N(P(vj) xp(v) xC). If 5, k & U then by Lemma 12rv vk( s Vesvig1l )

(p(vj) xp(vR) X C)) X C C Sy, oy, 0541 IN PAIticUlar,(o(v;), e(vr), d) € Sv; vy i1
If, say, j € U, then for any triple(o(v;), ¢(vk),d’) € Sy, w04, it Must be
d’ = d. However, by the choice af there isd’ € C such thaty(vj), p(vi),d") €
Svj 01+ THUS(p(v;),d) € S, forall j € [i].

Claim 2 is proved.
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To complete the proof it suffices to show that for anyy,z € V the set
max(Qzy,-), WhereQ, , . is the set of all tuplea from S, , . such thapr, ja €
SyppryacsS,) , pr,.acS), isasubsetof; .. If v e {z,y,z} this claim
is obvious. So suppose¢ {z,y, z}.

We show first thaiQ, , . # <. Take any triple(a, b, c) such that(a,b) €

Siy CSey (b,0) €S, CS, ., and(a,c) € S, C S, .. By Proposition 7 there

is (a',b', ) € Sy .. such that(a', V') € (a,0) € Sy, (V,¢) € (b,c) €S, and
() e @ S

Take a tuplea = (a,b,c) € max(Q,,,.) and a constrainC’ = (s, R’) €
C'. We need to show thairy, , .3a can be extended by a tupeé € R'. If
|s N {z,y,z}| < 3 the result follows from Claim 2 and Proposition 7. So suppose
{z,y,z} Cs. We assume = (vy,...,v;) andz = vy, y = vq, 2 = v3.

ConstraintC’ and relationR’ are obtained from a certain constraffitc C and
relation R, respectively. Sincéa,b,c) € S;,,., we have(a, b, c) € pr, , .R. By
Claim 2 there is a mapping : V' — A such thatp(z) = a, ¢(y) = b, ¢(z) = ¢,
and for anyu,w € V' it holds that(¢(u), p(w)) € S;/,,- In particular, for any
u,w € s we have(p(u), p(w)) € pr,,, . By Proposition 7 there ib € R such
that (b[i], b[j]) € Sy, ,, € pr,,,, R foranyi,j € [k] and(b[1],b[2],b[3]) =
(a, b, c). Clearly this tuple also belongs & that implies the result. O

Now we are in a position to prove Theorem 1.

Proof:[of Theorem 1] LetP = (V;F(A);d;C) be a 3-minimal problem in-
stance without empty constraint relations. We prove by d@tidn on the number
of elements iM\s,y, v € V, thatP has a solution.

THE BASE CASE OF INDUCTION If all As,, v € V, are arbitrarily maximal
generated, and simple or 1-element, then the requiredt fedlovs from Corol-
lary 5.

INDUCTION STER Suppose that the theorem holds for all problem instances
P = (V;F(A);0";C") where|Ag )| < |As,)| forv e V (hereAy . denotes the
set of partial solutions t®’ on {v}) and at least one inequality is strict.

We have two cases.

CAse 1. For somev € V, there is a maximal sc& of Gr'(As(,)) such that
Sg(B) # As(v)-

In this case take any maximal séof Gr'(As(,)) with Sg(B) # Ay, and
consider the probler®, z. By Proposition 8 this problem is 3-minimal. We get
the result by the inductive hypothesis.

CAse 2. For allv € V algebraA, is arbitrarily maximal generated.
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Let us assume that, for a certaire V, A, is not simple and is a maximal
congruence ofys,). By Corollary 2, for anyv € V — {u}, Sf, = {(a’,b) |
(a,b) € Sy} is either the direct produet s, /g x As(,), or the graph of a surjec-
tive mappingm, : As,) — Asw)/o- LELIW denote the set consisting ofand all
v € V such thats! , is the graph ofr,, and

0, if v =u,
0, =< kerm, fveW,
=, otherwise,

for v € V where=, denotes the equality relation @),. Consider thefactor
problem? = (V;F(A);6;C) whereA; = Asw)/9,» v € V, and for each

C=(s,R)eC,s=(vy,...,u), thereisC = (s, R) € C such that

R={(ayt,....ab®) | (au,.... an,) € R}.
As is easily seen, the factor problem is 3-minimal, theftay the induction hy-
pothesis it has a solution. Léty, ..., a,) be a solution. Notice thatif € W, then
a, is a congruence block afs,y, that is,a, is a subset of\, in this case. The
3-minimality of P implies that, for any constrairis, R) € C, anyv,w € sN W,
and anya € R, if a, € a, thena,, € a,,. SetP’ = (V;F(A);d';C") where

ay ifvelV,
Ay = {

As) otherwise
and for eaclC = (s, R) € C there isC’ = (s, R') € C’ with
ac R ifandonlyif a<c Randa, € a,foralve W ns.

Sincela,| < [Asq,l, to complete the proof we just have to show ti#4tis
3-minimal. ForU = {ul, ug, U3} C VsetSy = Sul,ug,U3 N (Sl X S X Sg) where
S; = Ay, Clearly, for anyC’ = (s, R') € C’, we havepr;~sR' C pryngSu.
Therefore, if we prove the reverse inclusion then we get theakty pr;~ R =
PrynsSu Which implies the 3-minimality of’.

Takeb = (ay, , Gu,, ay;) € max(Sy), (s, R) € C, anda € max(R) such that
Pryns@ = Pryngh. IFUNW Ns # & then, forany € sNW, a, € a,, and
thereforea € R'. If sNW = @ thenR’ = R, and agaila € R’. Otherwise,
consider the relatiodz. Choosev € s N W and set = pr(_y)u;,) R Since
every A, is arbitrarily maximal generated, by Corollary 6, for any S€ of
pre_y R we havepr, @ x Sg(T') C Q. This means that there is€ R such that
prs_wc = prg_yaande, € a,. Thereforec, € a, foranyw € snN W, and
hencec € R'. SincesNU C s — W, we havepr~;;c = pry~y/b, as required. O
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8 Testing omitting types

Finally, we consider the question whether or not the vangtgerated by a given
algebra or by the algebra of a given relational structuretiothe unary and affine
types. More precisely, we consider three decision prohlemsALGEBRA OF
TYPE 2 we are given a finite sed and operation tables of idempotent operations
fi,-.., fnonA, and the question is whethear(A), whereA = (A; {f1,..., fu})
omits the unary and affine types. IrTERATIONAL STRUCTURE OF TYPE2 we are
given a finite relational structurd such that all its polymorphisms are idempo-
tent, and the question is whetheir(Alg(.4)) omits the unary and affine types. In
RELATIONAL STRUCTURE OF TYPEZ2(k) we are given a finite relational struc-
ture A, |A| < k, again such that all its polymorphisms are idempotent, aed t
question is whethevar(Alg(.4)) omits the unary and affine types. The problem
ALGEBRA OF TYPEZ2 was shown solvable in polynomial time in [8], and it easily
follows from this result (see [4]) that R ATIONAL STRUCTURE OF TYPE2(k) is
also solvable in polynomial time. In this section we provatthaving the Strong
Bounded Width Conjecture proved the third problengLRTIONAL STRUCTURE

OF TYPE 2, is also solvable in polynomial time. More precisely we tlse fact
that there is an algorithm that solvesCSP(A) for any finite idempotent algebra
A providedvar(A) omits the unary and affine types.

Theorem 3 The RELATIONAL STRUCTURE OF TYPEZ2 problem is polynomial
time solvable.

We prove the theorem in two steps. First, we show Hoean be used to ap-
proximate relationgeneratedoy a set of tuples, and then we use such approxima-
tions to determine wether or not the variety corresponding telational structure
omits the unary and affine types.

Let B be a structure an® a (n-ary) relation definable by a pp-formula h
RelationR is generatedy tuplesas, ..., a; € Rif R is generated by those tuple
in the direct powe(Alg(B))".

It will be convenient for us to represent the problem of cliwgkwhether a
structure 4 belongs toCSP(B) as a constraint satisfaction problem. An instance
of the CSP ovei3 consists of a set of variable§], and a set of constraints of
the form (s, R) whereR is a relation of3 (say, of arity/) ands is an/-tuple of
variables froml/. A solution to such instance is a mappipg V' — B such that
¢(s) € R for every constrain{s, R). The correspondence between this form of
the CSP and homomorphisms of structures is as follows, gkeThe existence
of a solution to a CSP instance is equivalent to the existeheehomomorphism
from o-structureA to B, where the underlying set ol is the set of variable¥,
and every tuple of every relationR4 corresponds to constrait, R).
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Given ac-structureB with o = (R, ..., Ry), r; the arity of R;, and a relation
R over B with |R| = m of arity d, theindicator problem/ P(5, R) is defined as
follows:

e the setV of variables is the seftay, ..., a;pm } of all m-tuples of elements
from B;

e letT = {by,...,b,} be the set of B|"™-tuples withb;[j] = a;[i]; for each
i € [k] and eachr;-element tuples of elements froni” such thapr, 7" C R;,
we introduce a constrairs, R;).

The next statement follows from results of [10].

Lemma 21 Lets be ad-element subset 6f such thatpr,7" = R (up to permuta-
tions of tuples inR there is only one such set). Th&his pp-definable ir3 if and
only if, for any solutiony of IP(B, R), pry¢ € R.

Lemma 22 Assumingn and |R| are bounded/P(B, R) has polynomial size in
[1B]I-

Proof: Since|B|/#l is the number of variables ihP(B, R), if |R| is bounded,
the number of variables is polynomial |B|. For eachR;, containingn; tuples,
there areD(n") of at mostm-element sequences of tuples frdtn For each such
sequence there is exactly one tuple V such that(pr b, ..., pr,b,,) is equal
to the sequence. Therefore there fare) (max(n;)™) constraints i P(B, R). O

We consider the following algorithm for the indicator prefn. Suppose that
the time complexity of\ is bounded by a polynomiai(n).

Lemma 23 If var(Alg(B)) omits the unary and affine types thRBL-GEN returns
the relationSg(R) generated byr in B. Otherwise it returns a relatiord) such
that R C @ C Sg(R). In both cases ifn andd are bounded theREL-GEN runs
in polynomial time.

Proof: If var(Alg(B)) omits the unary and affine types then the result follows
from Lemma 21 and the assumptions &inOtherwiseR C () since( is assigned
to be R in Step 2 and never decreases. Because of the check in Stef) &2
never added an element that is not a membé&go6f?), which implies@ C Sg(R).
Finally, if m is bounded then by Lemma 22 Step 1 can be performed in polaiomi
time. If d is bounded then the number of iterations in Step 3 is polyaband
each iteration takes time not exceedjp@). O

To continue we need more definitions and results from algelret A =
(A4;C) be an algebra. Aerm operationof A is an operation that can be obtained
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INPUT: A o-structure B, whose polymorphisms are idempotent, with =
(R1,...,R) whereR; is of arity ;, and a relationR = {ai,...,a,,} of arity
d.

OUTPUT: A d-ary relationR’.

Step 1. constructIP(B, R), lets = (s1,...,s4) C V be the set of variables,
such thapr,b; = a;
Step2 setQ =R
Step 3. foreachc € BY— Rdo
Step3.1 callAonP. =IP(B,R)U{((si),{c[i]}) | 1 <i < d} along with
a clock that halts the execution upon reachg).
Step 3.2 if A returns an assignmegtand ¢ is a solution ofP. then do
Step 3.2.1 set@ := QU {c}
endif
endfor
Step4 output Q

Figure 1: Algorithm ReL-GEN

from operations i and projections by means of substitutionAl= Alg() for a
certain structurds then the term operations @éf are exactly the polymorphisms of
B. Polynomial operation®f A, or simplypolynomials are obtained from its term
operations by substituting constants instead of some ofahables. The set of all
unary polynomials of\ is denoted byPol; A. Let B andC' be non-void subsets of
A. The setsB, C are calledpolynomially isomorphigcif there existf, g € Pol; A
such that (i)f(B) = C, (i) g(C) = B, (iii) gf|p = idp, and (iv) fg|c = id¢. If

B andC are polynomially isomorphic, then this is denoted®y= C.

For elements, b of algebrad, leto, (a, b) (or simplyo(a, b) if A is clear from
the context) denote the transitive closurg f (a), f(b)}? | f € Poly A, {f(a), f(b)} %
{a,b}}. Thus,(c,d) € o(a,b) if and only if there existe > 1 andzg, 21, ..., 2, €
A with ¢ = 2y, d = z, and there ar¢f,..., f, € Pol; A such that for each,

1 <i<mn,{z,zi-1} = {fi(a), fi(b)} and{a, b} % {fi(a), fi(b)}. A 2-element
set{a,b} C Ais called asubtraceif and only if (a,b) & o(a,b).

Let A be an algebra, angh,b) € A? with a # b. The ordered paita, b) is
called a2-snagif there is a binary polynomiad of A such thatg(b,b) = b and
g(a,b) = g(b,a) = g(a,a) = a. Theorem 7.2 from [9] implies that algebra
omits the unary and affine types if and only if every its suldres a 2-snag.

Lemma 24 If {a, b} and{c, d} are polynomially isomorphic anfla, b} is a sub-
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trace [(a, b) is a 2-snag] ther{c, d} is a subtrace (c, d) or (d, ¢) is a 2-snag].

A subalgebra generated by a $ebf elements is the subset generatedSy
as a unary relation along the restrictions of the basic dioeiaonto this set. Let
|A| = k and letG(A) denote the directed graph whose vertices are{@lltwo—
element subsets df and ({a,b}, {c,d}) is an edge inG(A) if and only if there
exists af € Pol; A suchthaf{c,d} = {f(a), f(b)}. Asis easily seen, grapgh(A)
is reflexive and transitive. Sindg:, b} and{c, d} are polynomially isomorphic if
and only if ({a, b}, {c,d}), ({c,d},{a,b}) are both edges af/(A), the strongly
connected components 6f(A) are exactly the classes of the equivalence relation
= on the set of two-element subsets 4f Let CG(A) denote thecomponent
graph G(A). Let also for a vertex of G(A) v¢ denote the strongly connected
component containing. Theheightof vertexv is the length of a longest directed
path inCG(A) originating atv°.

Lemma 25 If var(A), whereA is idempotent, does not omit the unary or affine
type, then there are,b € A such that{a,b} is a subtrace in the subalgebf@
generated by, b, but neither(a, b) nor (b, a) is a 2-snag inC.

Proof: By Corollary 2.2 of [8] ifvar(A) for an idempotent algebra admits
the unary or affine type then there is a subalgebra dat admits one of these
types. LetB be such a subalgebra. Theorem 7.2 from [9] implies that tiseae
subtrace{a, b} C B such that neithefa, b), nor (b, a) is a 2-snag iB. Denote by
C the subalgebra generated fy, b}. We chooser, b such that (i)C is as small as
possible, and (i) there is no pa&fr, d} C C which is a subtrace i, but none of
(c,d), (d,c) is a2-snag iB, and its height irG(C) is less than that dfa, b). Such
a, b exist. Indeed, choose any subtrace that is not a 2-snafysajisondition (i).
Then inC take a pair of the lowest height possible such that/} is a subtrace
in B, but none of(c, d), (d, ) is a 2-snag. By condition (i), d generates the same
subalgebra as, b, but also satisfy condition (ii).

Observe that every (unary) polynomial @fis a restriction of a (unary) poly-
nomial of B onto the base s&t of C. Indeed, such a polynomial operation can be
obtained by plugging in the constants (frar) into the term operation produced
from the basic operations &@f by the same chain of substitutions. Theref6GeC)
is a subgraph of7(B). Also if there is a binary polynomiaj of C satisfying the
conditionsg(b,b) = b andg(a,b) = g(b,a) = g(a,a) = a, thenB has a polyno-
mial with the same properties.

If {a,b} is a subtrace ifC then we are done, because neitherb) nor (b, a)
is a 2-snag inC. Suppose thafa, b} is not a subtrace if©. This meanga,b) €
oc(a,b), that is, there are > 1 andzg,21,...,2, € Awithec = 25, d = 2z,
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and there aréfy, ..., f,, € Pol; C such that for eaclh, 1 < i < n, {z;,2;1} =
{fi(a), f;(b)} and{a, b} 2 {fi(a), f;(b)}. Since(a,b) & op(a,b), one of the pairs
{zi, zi+1} is polynomially isomorphic tda,b} in B. By Lemma 24{z;, z;+1} is

a subtrace iB and neither(z;, z;+1) nor (z;11,2;) IS a 2-snag. Moreover, as
{a,b} # {zi, zi+1}, the height of(z;, z;+1) is less than that ofa, b). A contradic-
tion with the choice of:, b. O

Now let A = Alg(B). To check whethevar(A) admits the unary or affine
types we just should go over all paiisb € A using REL-GEN to verify (i) if
{a, b} is a subtrace in the subalgebra generated,byand (ii) if (a, b) or (b,a) is a
2-snag in the same subalgebra. To find subtraces we uselthweifg construction
from [1].

For{a,b} C A, letG,;(A) denote the graph with vertex séf and such that
(c,d) is an edge ol if and only if ({a,b},{c,d}) is an edge ofG(A) and
{a,b} # {c,d}. Then{a,b} is a subtrace i if and only if there is no path from
atobinthe graphG, .

Note that in order to determine if there exists a unary patyiab f of the
subalgebraC generated by:, b and such thaf{c',d'} = {f(c), f(d)} for some
¢, d,d,d € C,itsuffices to construdg(R) for the binary relatiot? = {(a, a), (b,b), (¢,d)}
and check whether or n¢t’,d’) or (d’, ¢’) belongs to it. As for this relatiom = 3
andd = 2 this can be done using algorithneR GEN. Analogously, by the defini-
tion of 2-snag, a subsét, b} is a 2-snag in the subalgebra generated fdyif and
only if the 4-ary relation generated W0y, a, b, b), (a,b, a,b), (a,a,a,a), (b,b,b,b)
contains(a, a, a, b).

This method works provided algorithmeR-GEN returns the right value of
Sg(R). However, itis not always the case. As we shall see laterfilean use the
results of REL-GEN even they are not correct, but we need some sort of monotonic-
ity. Let the subalgebra generated by aSeitccording to our algorithm be denoted
by Sg(S)" and the graph of polynomial mappings of pairs@ySg(S)’). Clearly,
Sg(S)" C Sg(S) andG’(Sg(S)') is a subgraph of(Sg(S)). We need to make
sure that, for any pait, b and any paie, d € Sg(a,b)’, Sg(c,d)" C Sg(a,b)’, and
thatG’(Sg(c,d)’) is a subgraph of’(Sg(a,b)’). Both conditions can be achieved
by using algorithm AG-GEN and GRAPH-GEN for generating subalgebras and
constructing graphs, respectively.

Lemma 26 For any structure A with idempotent polymorphisms, anyb € A,
and anyc, d € Sg(a,b)’, (i) Sg(c,d)’ C Sg(a,b)’, and (i) graphG’(Sg(c,d)’) is a
subgraph ofG’(Sg(a, b)").

Lemma 26 follows straightforwardly from the descriptionadgorithms A.G-
GEN and ReL-GEN.
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INPUT: A relational structured anda,b € A
OuTPUT: A setSg(a,b)’, {a,b} C Sg(a,b)’ C Sg(a,b), ‘generated’ by, b

Step1 setS :={a,b}, changed := true
Step 2 while changed do
Step 2.1  setchanged := false
Step 2.2 forall ¢,d € Sdo
Step 2.2.1 call REL-GEN on A and unary relatiod ¢, d}; the result denote bR
Step 2.2.2 if R Z S setchanged := true
Step 2.2.3 setS:=SUR
endfor

endwhile

Step 3 output S

Figure 2: Algorithm A .G-GEN

INPUT: A relational structured anda,b € A
OuTPUT: A subgraphG’(Sg(a,b)’), of G(Sg(a, b))

Step 1 call ALG-GEN on A anda, b; denote the result bg'
Step2 setV :={{c,d}c,d € C;c#d}, E:=10
Step 3 forall (a’,b') € C% d #¥,do
Step 3.1 call ALG-GEN on A andd’, V'; denote the result bg’
Step 3.2 forall ¢,d € C’,c+# d,do
Step2.2.1  call REL-GEN on 4 and binary relatiod (¢, a’), (b, V'), (¢, d), (d,¢)};
denote the result bR
Step2.22  forall (¢,d') e R,d #d setE := EU ({c,d},{c,d})
endfor
endwhile
Step 3 output (V, E)

Figure 3: Algorithm GRAPH-GEN
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INPUT: A relational structured

OuTpPUT: YES if var(Alg(A)) admits the unary or affine type, NO otherwise

Step 1 foreachpaira,b € Ado
Step 1.1  construct graphG(B) whereB is the subalgebra generated fay, b}
Step 1.2 if {a,b} is a subtrace i then do
Step 1.2.1 if neither(a, b) nor (b, a) is a 2-snag iIB then output YES andstop
endif
endfor
Step 2. output NO

Figure 4: Algorithm WARY-AFFINE-TYPE-CHECK

Now we are in a position to introduce an algorithm checkingtting the unary
and affine types.

Lemma 27 AlgorithmUNARY-AFFINE-TYPE-CHECK correctly decides ifar(Alg(.A))
omits the unary and affine types and is polynomial time.

Proof: Since all the algorithms involved are polynomial time and ealled
only polynomially many times, the algorithm is polynomighe.

If var(A) omits the unary and affine types theeIRGEN generates the relation
generated by certain tuples correctly, and, as there is bivagme which is not a
2-snag, the algorithm outputs NO. ThusiARY-AFFINE-TYPE-CHECK gives no
false negatives. I¥ar(A) admits one of the types, algorithmeR-GEN can miss
some of the polynomials. This may lead to three possibleakest (1) Identifying
a subtrace as a not 2-snag while it is. (2) Deciding that scairs pf elements are
not isomorphic while they are, which may lead to a concluglat some pair is
not a subtrace while it is a subtrace. (3) Deciding that tier® f € Pol; A with
f{{a,b}) = {c,d} while such polynomial exists, which may lead to identifying
some pair as a subtrace while it is not.

Cases (1) and (3) do not cause any difficulties, because $e tteses we only
may mistakenly conclude that some pair withnesses admittisgunary or affine
type. However, this can happen onlyir(A) admits one of those types indeed,
and therefore, although we are wrong about a particulayr pairoverall decision
is correct. To cope with case (2) we need to elaborate.

What we need to prove is thatAf = Alg(.A) contains subtraces that are not
2-snags, at least one of them will be identified by the alborit Suppose that
{a,b} is a subtrace that is not a 2-snag. By Lemma 25, we may asswani it
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also a subtrace in the subalgelitgenerated bya, b}, and that neithefa, b) nor
(a,b) is a 2-snag irC. Note that if the algorithm identifies it as a subtrace, ibals
identifies it as a non-2-snag.

We proceed by induction on the size of theGéfound by REL-GEN as the set
generated by, b and the height ofa, b} in G’(C), the graph constructed instead
of C'(C) by the algorithm. IfC’| = 2 then{a, b} is the only pair in this subalgebra
that is isomorphic to itself and therefore is identified aslatigce. If the height of
{a,b} is 0 then every paiff(a), f(b)), f is a unary polynomial of found by the
algorithm, belongs to the same strongly connected compoaed therefore the
seto((a, b) found by the algorithm is empty. Again, the algorithm idéesi{a, b}
as a subtrace.

Now suppose thafa, b} is a subtrace and the algorithm (mistakenly) finds a
sequencer = z,...,%z = b such that{z;,z;11} € o(a,b). Since(a,b) ¢
oc(a,b), there isj such that{z;, zj11} = {a,b} in algebraC, but this isomor-
phism is overlooked by the algorithm. By Lemma £4;,z;,} is an subtrace
and neither(z;, zj 1) nor (zj41, 2;) is a 2-snag. If the subalgebras generated by
{zj,2j+1} and by{a,b} (as found by the algorithm) are different, then we are
done by inductive hypothesis. Otherwi&&(Sg(z;, zj+1)") = G'(Sg(a,b)’), but
the height of{z;, z; 1} is strictly less than that ofa, b}. We again use the induc-
tive hypothesis. O
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