A/B Testing & Bandit Based Solutions

Nick Sumner
wsumner@sfu.ca
How do you know that a change adds value?

- The scenario
 - You maintain a web site and are considering a change
 - You hypothesize that the change improves outcomes in some way
How do you know that a change adds value?

• The scenario
 – You maintain a web site and are considering a change
 – You hypothesize that the change improves outcomes in some way

• The problem
 – How can you find out whether one change (or many!) improves results?
How do you know that a change adds value?

- **The scenario**
 - You maintain a web site and are considering a change
 - You hypothesize that the change improves outcomes in some way

- **The problem**
 - How can you find out whether one change (or many!) improves results?
 - How can you do this without costing your company money?
How do you know that a change adds value?

• The scenario
 – You maintain a web site and are considering a change
 – You hypothesize that the change improves outcomes in some way

• The problem
 – How can you find out whether one change (or many!) improves results?
 – How can you do this without costing your company money?
How do you know that a change adds value?

- The scenario
 - You maintain a web site and are considering a change
 - You hypothesize that the change improves outcomes in some way

- The problem
 - How can you find out whether one change (or many!) improves results?
 - How can you do this without costing your company money?

You should already have an intuition for attacking this. What should you do?
How do you know that a change adds value?

- **The scenario**
 - You maintain a web site and are considering a change
 - You hypothesize that the change improves outcomes in some way

- **The problem**
 - How can you find out whether one change (or many!) improves results?
 - How can you do this without costing your company money?

- **Solutions**
 - *A/B Testing* uses different forms of hypothesis testing
 - Alternatively, you can use *multi-armed bandits* to attack the problem
How do you know that a change adds value?

- The scenario
 - You maintain a web site and are considering a change
 - You hypothesize that the change improves outcomes in some way

- The problem
 - How can you find out whether one change (or many!) improves results?
 - How can you do this without costing your company money?

- Solutions
 - A/B Testing uses different forms of hypothesis testing
 - Alternatively, you can use multi-armed bandits to attack the problem
 - Key idea: run controlled experiments live on the deployed software
How do you know that a change adds value?

- The scenario
 - You maintain a web site and are considering a change
 - You hypothesize that the change improves outcomes in some way

- The problem
 - How can you find out whether one change (or many!) improves results?
 - How can you do this without costing your company money?

- Solutions
 - *A/B Testing* uses different forms of hypothesis testing
 - Alternatively, you can use *multi-armed bandits* to attack the problem
 - Key idea: run controlled experiments live on the deployed software

- Caveat: We **will not** dive into a full stats background for these
 - We **will** discuss some common pitfalls that arise from misunderstandings
When might you want to know?

- Exploring ideas to improve usability
When might you want to know?

- Exploring ideas to improve usability
 - Or performance (throughput, latency, ...)
When might you want to know?

- Exploring ideas to improve usability
 - Or performance (throughput, latency, ...)
- Establishing the effectiveness of promotion before campaigns
When might you want to know?

- Exploring ideas to improve usability
 - Or performance (throughput, latency, ...)
- Establishing the effectiveness of promotion before campaigns
- Staged rollouts of major changes
When might you want to know?

- Exploring ideas to improve usability
 - Or performance (throughput, latency, ...)
- Establishing the effectiveness of promotion before campaigns
- Staged rollouts of major changes
 - Minimizing risk of: CD, fragmented configurations, ...
 - e.g. rolling out apps to the Android store
Simple A/B Testing

- You have:
 - two solutions, A and B (e.g., A is old, B is new)
 - A hypothesis (e.g. A will improve conversion over B by at least 5%)
Simple A/B Testing

- You have:
 - two solutions, A and B (e.g., A is old, B is new)
 - A hypothesis (e.g. A will improve conversion over B by at least 5%)

- Basic solution:
 - **Determine what data to collect** (choose population, metric, & size up front!!!)
Simple A/B Testing

- **You have:**
 - two solutions, A and B (e.g., A is old, B is new)
 - A hypothesis (e.g. A will improve conversion over B by at least 5%)

- **Basic solution:**
 - **Determine what data to collect** (choose population, metric, & size up front!!!)
 - **Randomly provide(/serve) A to one population and B to another to collect predetermined stats**
Simple A/B Testing

- You have:
 - two solutions, A and B (e.g., A is old, B is new)
 - A hypothesis (e.g. A will improve conversion over B by at least 5%)

- Basic solution:
 - Determine what data to collect (choose population, metric, & size up front!!!)
 - Randomly provide(/serve) A to one population and B to another to collect predetermined stats
 - Use a basic t-test to measure differences in the populations
Simple A/B Testing

- You have:
 - two solutions, A and B (e.g., A is old, B is new)
 - A hypothesis (e.g. A will improve conversion over B by at least 5%)

- Basic solution:
 - Determine what data to collect (choose population, metric, & size up front!!!)
 - Randomly provide(/serve) A to one population and B to another to collect predetermined stats
 - Use a basic t-test to measure differences in the populations

\[\mu_1 < \mu_2 \]
Recalling T-tests

- Can be one-sided (tailed) or two sided (tailed)
 - distinguishing directed and undirected differences
Recalling T-tests

- Can be one-sided (tailed) or two sided (tailed)
 - distinguishing directed and undirected differences
- Assume (1) observation independence and (2) normal distribution
Recalling T-tests

- Can be one-sided (tailed) or two sided (tailed)
 - distinguishing directed and undirected differences
- Assume (1) observation independence and (2) normal distribution
- Distinguish 2 hypotheses (e.g.):
 - \(H_0: \mu_1 - \mu_2 = 0 \) (the null hypothesis – assumed true until disproven)
 - \(H_1: \mu_1 < \mu_2 \) (the alternative)
Recalling T-tests

- Can be one-sided (tailed) or two-sided (tailed)
 - distinguishing directed and undirected differences
- Assume (1) observation independence and (2) normal distribution
- Distinguish 2 hypotheses (e.g.):
 - $H_0: \mu_1 - \mu_2 = 0$ (the null hypothesis – assumed true until disproven)
 - $H_1: \mu_1 < \mu_2$ (the alternative)
Recalling T-tests

- Can be one-sided (tailed) or two sided (tailed)
 - distinguishing directed and undirected differences
- Assume (1) observation independence and (2) normal distribution
- Distinguish 2 hypotheses (e.g.):
 - H_0: $\mu_1 - \mu_2 = 0$ (the null hypothesis – assumed true until disproven)
 - H_1: $\mu_1 < \mu_2$ (the alternative)
- **RECALL:**
 We never prove a hypothesis!
 We gather sufficient evidence to reject the null hypothesis and thus accept the alternative
Recalling T-tests

\[t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{\frac{S_1^2}{m}} + \sqrt{\frac{S_2^2}{n}}} \]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)
Recalling T-tests

\[t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} \]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)

\(H_a: \mu_1 - \mu_2 > \Delta \)

\(H_a: \mu_1 - \mu_2 < \Delta \)

\(H_a: \mu_1 - \mu_2 \neq \Delta \)
Recalling T-tests

\[t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{s_1^2/m} + \sqrt{s_2^2/n}} \]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)

- \(H_a: \mu_1 - \mu_2 > \Delta \) \(t > t_{\alpha,v} \)
- \(H_a: \mu_1 - \mu_2 < \Delta \) \(t < -t_{\alpha,v} \)
- \(H_a: \mu_1 - \mu_2 \neq \Delta \) \(|t| > t_{\alpha/2,v} \)
Recalling T-tests

\[t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{\frac{S_1^2}{m}} + \sqrt{\frac{S_2^2}{n}}} \]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)

\[H_a: \mu_1 - \mu_2 > \Delta \]
\[t > t_{\alpha, v} \]
\[p = P[T \geq t | H_0] \]

\[H_a: \mu_1 - \mu_2 < \Delta \]
\[t < -t_{\alpha, v} \]
\[p = P[T \leq t | H_0] \]

\[H_a: \mu_1 - \mu_2 \neq \Delta \]
\[|t| > t_{\alpha/2, v} \]
\[p = P[|T| \geq t | H_0] \]
Recalling T-tests

\[t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{s_1^2} + \sqrt{s_2^2}} \]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)

- \(H_a: \mu_1 - \mu_2 > \Delta \) \(t > t_{\alpha, v} \) \(p = P[T \geq t | H_0] \)
- \(H_a: \mu_1 - \mu_2 < \Delta \) \(t < -t_{\alpha, v} \) \(p = P[T \leq t | H_0] \)
- \(H_a: \mu_1 - \mu_2 \neq \Delta \) \(|t| > t_{\alpha/2, v} \) \(p = P[|T| \geq t | H_0] \)

\[v = \frac{\left(\frac{s_1^2}{m} + \frac{s_2^2}{n} \right)}{(s_1^2/m)^2 + (s_2^2/n)^2} \frac{m-1}{m} + \frac{n-1}{n} \]
Recalling T-tests

\[
t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{\frac{S^2_1}{m} + \frac{S^2_2}{n}}}
\]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)

- \(H_a: \mu_1 - \mu_2 > \Delta \)
 \[t > t_{\alpha, \nu} \]
 \[p = P[T > t|H_0] \]

- \(H_a: \mu_1 - \mu_2 < \Delta \)
 \[t < -t_{\alpha, \nu} \]
 \[p = P[T < t|H_0] \]

- \(H_a: \mu_1 - \mu_2 \neq \Delta \)
 \[|t| > t_{\alpha/2, \nu} \]
 \[p = P[|T| > t|H_0] \]

\[
v = \left(\frac{S^2_1}{m} + \frac{S^2_2}{n} \right) \frac{(S^2_1/m)^2}{m-1} + \frac{(S^2_2/n)^2}{n-1}
\]

Where \(\alpha \) captures the level of confidence for a p-value.
Recalling T-tests

\[t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} \]

Where \(H_0: \mu_1 - \mu_2 = \Delta \)

H\textsubscript{a}: \(\mu_1 - \mu_2 > \Delta \) \(t > t_{\alpha,v} \) \(p = P[T \geq t | H_0] \)

H\textsubscript{a}: \(\mu_1 - \mu_2 < \Delta \) \(t < -t_{\alpha,v} \) \(p = P[T \leq t | H_0] \)

H\textsubscript{a}: \(\mu_1 - \mu_2 \neq \Delta \) \(|t| > t_{\alpha/2,v} \) \(p = P[|T| \geq t | H_0] \)

But subtle challenges arise in practice!
Problem: Choosing and tagging populations

- The hypothesis in question may not apply to everyone
Problem: Choosing and tagging populations

- The hypothesis in question may not apply to everyone
 - Is there a specific user segment that it should apply to? (Users of features X,Y,Z? Users in a specific country? Early adopters?)
Problem: Choosing and tagging populations

- The hypothesis in question may not apply to everyone
 - Is there a specific user segment that it should apply to?
 (Users of features X,Y,Z? Users in a specific country? Early adopters?)

- The hypothesis might affect different subpopulations differently
Problem: Choosing and tagging populations

- The hypothesis in question may not apply to everyone
 - Is there a specific user segment that it should apply to? (Users of features X,Y,Z? Users in a specific country? Early adopters?)

- The hypothesis might affect different subpopulations differently
 - People familiar with workflow X
 - Different age groups
 - People speaking different languages
 - People using the software on different workdays
Problem: Choosing and tagging populations

- The hypothesis in question may not apply to everyone
 - Is there a specific user segment that it should apply to? (Users of features X,Y,Z? Users in a specific country? Early adopters?)

- The hypothesis might affect different subpopulations differently
 - People familiar with workflow X
 - Different age groups
 - People speaking different languages
 - People using the software on different workdays

- Possible factors in the results ought to be identified up front. Collecting them after the fact requires rerunning an experiment.
Problem: Choosing and tagging populations

- The hypothesis in question may not apply to everyone
 - Is there a specific user segment that it should apply to?
 (Users of features X,Y,Z? Users in a specific country? Early adopters?)

- The hypothesis might affect different subpopulations differently
 - People familiar with workflow X
 - Different age groups
 - People speaking different languages
 - People using the software on different workdays

- Possible factors in the results ought to be identified up front. Collecting them after the fact requires rerunning an experiment.

- Your sample ought to be representative.
Problem: False positives and negatives

There is always a risk of error

Type I error

\[P[\text{reject } H_0 \mid H_0] \]

\[\beta \]

\[P[\text{fail to reject } H_0 \mid \neg H_0] \]

Type II error

\[P[\text{reject } H_0 \mid \neg H_0] \]
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses?
 Can you run your tests and try many hypotheses later?
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses? Can you run your tests and try many hypotheses later?
 - Define clear goals. Hypotheses not targeting goals are useless.
 - Testing many things increases the likelihood of false positives \(P[\text{reject } H_0 \mid H_0] \)
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses? Can you run your tests and try many hypotheses later?
 - Define clear goals. Hypotheses not targeting goals are useless.
 - Testing many things increases the likelihood of *false positives* ($P[\text{reject } H_0 \mid H_0]$)

\[
p = P[\text{A sample is at least as extreme as observed } \mid H_0]
\]
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses? Can you run your tests and try many hypotheses later?
 - Define clear goals. Hypotheses not targeting goals are useless.
 - Testing many things increases the likelihood of *false positives* ($P(\text{reject } H_0 | H_0)$)
 - The temptation (and management pressure) favors *p-hacking*
 \[p = P(\text{A sample is at least as extreme as observed } | H_0) \]
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses? Can you run your tests and try many hypotheses later?
 - Define clear goals. Hypotheses not targeting goals are useless.
 - Testing many things increases the likelihood of false positives.
 - The temptation (and management pressure) favors p-hacking.

 \[p = P[A \text{ sample is at least as extreme as observed } | H_0] \]

Suppose you run 5 tests with \(p = 0.1 \), what is the likelihood of a false positive?
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses?
 Can you run your tests and try many hypotheses later?
 - Define clear goals. Hypotheses not targeting goals are useless.
 - Testing many things increases the likelihood of false positives
 - The temptation (and management pressure) favors p-hacking
 \[p = P[A \text{ sample is at least as extreme as observed } | \ H_0] \]

Could you correct for this?
Problem: Choosing hypotheses

- Can you simply test any and all hypotheses? Can you run your tests and try many hypotheses later?
 - Define clear goals. Hypotheses not targeting goals are useless.
 - Testing many things increases the likelihood of *false positives*
 - The temptation (and management pressure) favors *p-hacking*

- The more hypotheses you test, the greater your risk of false positives
 - This can be mitigated, but you should choose hypotheses well up front
Problem: Stopping criteria & confidence

- In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.
Problem: Stopping criteria & confidence

- In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.
 - Calculate the number of samples required first, then run the test.
In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.

- Calculate the number of samples required first, then run the test.
- **Do not** just observe the process and stop it “after significance reached”
Problem: Stopping criteria & confidence

• In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.
 – Calculate the number of samples required first, then run the test.
 – *Do not* just observe the process and stop it “after significance reached”

• But then how many samples are required?
Problem: Stopping criteria & confidence

• In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.
 – Calculate the number of samples required first, then run the test.
 – *Do not* just observe the process and stop it “after significance reached”

• But then how many samples are required?
 – First determine the acceptable error probabilities, α and β (often 5% & 20%)
Problem: Stopping criteria & confidence

- In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.
 - Calculate the number of samples required first, then run the test.
 - Do not just observe the process and stop it “after significance reached”

- But then how many samples are required?
 - First determine the acceptable error probabilities, α and β (often 5% & 20%)
 - The power of a test is $(1-\beta)$. $P[\text{reject } H_0 \mid \neg H_0]$
Problem: Stopping criteria & confidence

- In order to test with a certain significance (e.g. $\alpha=0.05$), the size of a test campaign with T-tests must be set up front.
 - Calculate the number of samples required first, then run the test.
 - *Do not* just observe the process and stop it “after significance reached”

- But then how many samples are required?
 - First determine the acceptable error probabilities, α and β (often 5% & 20%)
 - The *power* of a test is $(1-\beta)$. $P[\text{reject } H_0 \mid \neg H_0]$
 - This can also be expressed as “minimum detectable effect size”
 - If variance and sample sizes can differ, this is challenging, so most just use available sample size calculators based on α and β.

Problem: Regression to the mean

- Following an extreme event, the next event is likely less extreme.
Problem: Regression to the mean

- Following an extreme event, the next event is likely less extreme.
- Suppose poorly performing students are put in a special program.
Problem: Regression to the mean

- Following an extreme event, the next event is likely less extreme.
- Suppose poorly performing students are put in a special program.
 - After completion of the program, they perform better.
 - *Is the program effective?*
Problem: Regression to the mean

- Following an extreme event, the next event is likely less extreme.
- Suppose poorly performing students are put in a special program.
 - After completion of the program, they perform better.
 - Is the program effective?
 - If they were already poor performers, improving was more likely anyway!
Problem: Regression to the mean

- Following an extreme event, the next event is likely less extreme.
- Suppose poorly performing students are put in a special program.
 - After completion of the program, they perform better.
 - Is the program effective?
 - If they were already poor performers, improving was more likely anyway!
 - This can be used to falsely justify punishment & rewards
Problem: Regression to the mean

- Following an extreme event, the next event is likely less extreme.
- Suppose poorly performing students are put in a special program.
 - After completion of the program, they perform better.
 - Is the program effective?
 - If they were already poor performers, improving was more likely anyway!
 - This can be used to falsely justify punishment & rewards

- The illusion of significance
Problem: Novelty effects

- Users are used to seeing a blue “buy” button and ignore it, so you change it to red.
Problem: Novelty effects

- Users are used to seeing a blue “buy” button and ignore it, so you change it to red.
 - Sales skyrocket. Red is clearly better!
 - Until a week later when sales return to normal...
Problem: Novelty effects

- Users are used to seeing a blue “buy” button and ignore it, so you change it to red.
 - Sales skyrocket. Red is clearly better!
 - Until a week later when sales return to normal...

- The novelty of the change for the sample may bias the underlying results of the study
Other forms of hypothesis testing

- T-tests are not the only approach and do not always apply
Other forms of hypothesis testing

- T-tests are not the only approach and do not always apply
 - Known variance?
 - Independence?
 - Normality?
 - Qualitative vs Quantitative measures? (does a relationship exist at all?)
 - Small sample sizes expected?
 - ...
Other forms of hypothesis testing

- T-tests are not the only approach and do not always apply
 - Known variance?
 - Independence?
 - Normality?
 - Qualitative vs Quantitative measures? (does a relationship exist at all?)
 - Small sample sizes expected?
 - ...

 If the testing is important, you should be doing something obvious or consulting a statistician.
Other forms of hypothesis testing

- T-tests are not the only approach and do not always apply
 - Known variance?
 - Independence?
 - Normality?
 - Qualitative vs Quantitative measures? (does a relationship exist at all?)
 - Small sample sizes expected?
 - ...

- But what if even the notion of a predetermined campaign does not fit?
Other forms of hypothesis testing

- T-tests are not the only approach and do not always apply
 - Known variance?
 - Independence?
 - Normality?
 - Qualitative vs Quantitative measures? (does a relationship exist at all?)
 - Small sample sizes expected?
 - ...

- But what if even the notion of a predetermined campaign does not fit?
 - Sequential hypothesis testing & Bayesian approaches
 - Bandits
Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
 - Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/_fixed
Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
 - Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/fixed

Why might running a t-test be undesirable?
Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
 - Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/fixed

- There may be sufficient evidence to stop the test early
 - Especially when an effect is extreme!
Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
 - Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/fixed

- There may be sufficient evidence to stop the test early
 - Especially when an effect is extreme!
 - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ...

Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
 - Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/fixed

- There may be sufficient evidence to stop the test early
 - Especially when an effect is extreme!
 - ✓✗✗✓✗✗✗...
Sequential Hypothesis Testing

• Consider managing an assembly line
 – Making components for computers
 – Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/fixed

• There may be sufficient evidence to stop the test early
 – Especially when an effect is extreme!
 – ✓ × × ✓ × × × × ...
 – What are the stopping criteria?
 When is there enough evidence to be convinced?
Sequential Hypothesis Testing

- Consider managing an assembly line
 - Making components for computers
 - Up to 5% of the components can be faulty, otherwise the line should be stopped and inspected/fixed

- There may be sufficient evidence to stop the test early
 - Especially when an effect is extreme!
 - ✓ X X ✓ X X X X ...
 - What are the stopping criteria? When is there enough evidence to be convinced?

- NOTE: This problem is challenging and is an active area of research
 - We will only look at one approach
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A,B,S_K such that
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A, B, S_K such that
 - $A < B$
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A, B, S_K such that
 - $A < B$
 - $B < S_K \Rightarrow$ reject H_0 and stop
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A,B,S_K such that
 - $A < B$
 - $B < S_K \Rightarrow$ reject H_0 and stop
 - $S_K < A \Rightarrow$ fail to reject H_0 and stop
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A,B,S_K such that
 - $A < B$ ⇒ reject H0 and stop
 - $B < S_K$ ⇒ reject H0 and stop
 - $S_K < A$ ⇒ fail to reject H0 and stop
 - $A < S_K < B$ ⇒ continue sampling
Sequential Hypothesis Testing

- Given a sequence of observations \(X_1X_2X_3...X_K \), we want \(A,B,S_K \) such that
 - \(A < B \)
 - \(B < S_K \) \(\Rightarrow \) reject \(H_0 \) and stop
 - \(S_K < A \) \(\Rightarrow \) fail to reject \(H_0 \) and stop
 - \(A < S_K < B \) \(\Rightarrow \) continue sampling

- Done using Wald’s Sequential Probability Ratio Test

\[
S_K = \log \prod_{i=1}^{K} \frac{p(X_i|H_A)}{p(X_i|H_0)} \quad \text{a likelihood ratio test}
\]
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A,B,S_K such that
 - $A < B$ ⇒ reject H_0 and stop
 - $B < S_K$ ⇒ reject H_0 and stop
 - $S_K < A$ ⇒ fail to reject H_0 and stop
 - $A < S_K < B$ ⇒ continue sampling

- Done using Wald’s Sequential Probability Ratio Test

\[
S_K = \log \prod_{i=1}^{K} \frac{p(X_i|H_A)}{p(X_i|H_0)} \quad \text{a likelihood ratio test}
\]

\[
A = \log \frac{\beta}{1-\alpha} \quad B = \log \frac{1-\beta}{\alpha}
\]
Sequential Hypothesis Testing

- Given a sequence of observations $X_1 X_2 X_3 ... X_K$, we want A, B, S_K such that
 - $A < B$ ⇒ reject H_0 and stop
 - $B < S_K$ ⇒ reject H_0 and stop
 - $S_K < A$ ⇒ fail to reject H_0 and stop
 - $A < S_K < B$ ⇒ continue sampling

- Done using Wald’s Sequential Probability Ratio Test

 $S_K = \log \prod_{i=1}^{K} \frac{p(X_i | H_A)}{p(X_i | H_0)}$ a likelihood ratio test

 $A = \log \frac{\beta}{1-\alpha}$

 $B = \log \frac{1-\beta}{\alpha}$

 $S_0 = 0$

 $S_K = S_{K-1} + \log p(X_K | H_A) - \log p(X_K | H_0)$
Sequential Hypothesis Testing

- Given a sequence of observations $X_1 X_2 X_3 \ldots X_K$, we want A, B, S_K such that
 - $A < B$ ⇒ reject H_0 and stop
 - $B < S_K$ ⇒ reject H_0 and stop
 - $S_K < A$ ⇒ fail to reject H_0 and stop
 - $A < S_K < B$ ⇒ continue sampling

- Done using Wald’s Sequential Probability Ratio Test

 $S_K = \log \prod_{i=1}^K \frac{p(X_i|H_A)}{p(X_i|H_0)}$ a **likelihood ratio test**

 $A = \log \frac{\beta}{1-\alpha}$

 $B = \log \frac{1-\beta}{\alpha}$

- Caveat/risk:
 - May only be beneficial/useful for simple hypotheses. Otherwise it is complex.
Sequential Hypothesis Testing

- Given a sequence of observations $X_1X_2X_3...X_K$, we want A, B, S_K such that:
 - $A < B$ \implies reject H0 and stop
 - $B < S_K$ \implies fail to reject H0 and stop
 - $S_K < A$ \implies continue sampling

- Done using Wald’s Sequential Probability Ratio Test

\[
S_K = \log \prod_{i=1}^{K} \frac{p(X_i|H_A)}{p(X_i|H_0)} \quad \text{a likelihood ratio test}
\]

\[
A = \log \frac{\beta}{1-\alpha} \quad B = \log \frac{1-\beta}{\alpha}
\]

- Caveat/risk:
 - May only be beneficial/useful for simple hypotheses. Otherwise it is complex.

- Simpler approaches exist based on the Gambler’s Ruin (w/ no H0 estimate)
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with *multi armed bandits*
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with *multi armed bandits*
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with *multi armed bandits*
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with *multi armed bandits*
 - Each arm has an unknown likelihood of paying out when chosen
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with **multi armed bandits**
 - Each arm has an unknown likelihood of paying out when chosen
 - Want to maximize profit over time
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with *multi armed bandits*
 - Each arm has an unknown likelihood of paying out when chosen
 - Want to maximize profit over time
 - Fundamentally choosing between *exploration* & *exploitation*
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with *multi armed bandits*
 - Each arm has an unknown likelihood of paying out when chosen
 - Want to maximize profit over time
 - Fundamentally choosing between *exploration* & *exploitation*
 - We only want to spend enough effort on bad arms to believe they are bad
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with **multi armed bandits**
 - Each arm has an unknown likelihood of paying out when chosen
 - Want to maximize profit over time
 - Fundamentally choosing between *exploration* & *exploitation*
 - We only want to spend enough effort on bad arms to believe they are bad

So why might you prefer bandits over A/B tests (or vice versa)?
Multi-Armed Bandits

- What if we don’t really care whether H_0 is false; we just want to make a good choice now?
- Given options A, B, C, and D, which is the best to use based on evidence so far?
- This is attacked with multi armed bandits
 - Each arm has an unknown likelihood of paying out when chosen
 - Want to maximize profit over time
 - Fundamentally choosing between exploration & exploitation
 - We only want to spend enough effort on bad arms to believe they are bad

- Many solutions. Two common ones:
 - ϵ-greedy strategy
 - Thompson sampling
Multi-Armed Bandits

- Usual assumptions
 - Reward probabilities (like conversion rates) don’t change
Multi-Armed Bandits

• Usual assumptions
 – Reward probabilities (like conversion rates) don’t change
 – Sampling is singular & instantaneous (choosing a version & its reward)
Multi-Armed Bandits

• Usual assumptions
 – Reward probabilities (like conversion rates) don’t change
 – Sampling is singular & instantaneous (choosing a version & its reward)
 – Samples are independent (i.i.d.)
Multi-Armed Bandits

- Usual assumptions
 - Reward probabilities (like conversion rates) don’t change
 - Sampling is singular & instantaneous (choosing a version & its reward)
 - Samples are independent (i.i.d.)

- While solutions can be robust when assumptions are violated, there can be better variants or better solutions
Multi-Armed Bandits: ε-Greedy Strategy

- ε-greedy strategy
 - Has the benefit of being dead simple
 - May be too sensitive to variance and perform worse than other approaches
Multi-Armed Bandits: \(\varepsilon \)-Greedy Strategy

- \(\varepsilon \)-greedy strategy
 - Has the benefit of being dead simple
 - May be too sensitive to variance and perform worse than other approaches

```python
on_choice():
    with probability 1-\( \varepsilon \):
        pull the best arm so far
    else:
        pull a random arm
    update pulled arm stats
```
Multi-Armed Bandits: ε-Greedy Strategy

- ε-greedy strategy
 - Has the benefit of being dead simple
 - May be too sensitive to variance and perform worse than other approaches

```python
on_choice():
    with probability 1-$\varepsilon$:
        pull the best arm so far
    else:
        pull a random arm
    update pulled arm stats
```
Multi-Armed Bandits: ε-Greedy Strategy

- ε-greedy strategy
 - Has the benefit of being dead simple
 - May be too sensitive to variance and perform worse than other approaches
 - Choosing ε
 - A higher ε favors exploration.
 - Lower ε favors exploitation.
 - 0.1 is common

```python
on_choice():
    with probability 1-\varepsilon:
        pull the best arm so far
    else:
        pull a random arm
    update pulled arm stats
```
Multi-Armed Bandits: ϵ-Greedy Strategy

- ϵ-greedy strategy
 - Has the benefit of being dead simple
 - May be too sensitive to variance and perform worse than other approaches
 - Choosing ϵ
 - A higher ϵ favors exploration.
 - Lower ϵ favors exploitation.
 - 0.1 is common

- Can also vary/scale ϵ over time.
 - Can be used to logarithmically bound regret by limiting future exploration (decay)

```
on_choice():
    with probability 1-\epsilon:
    pull the best arm so far
    else:
    pull a random arm
    update pulled arm stats
```
Multi-Armed Bandits: ε-Greedy Strategy

- ε-greedy strategy
 - Has the benefit of being dead simple
 - May be too sensitive to variance and perform worse than other approaches
 - Choosing ε
 - A higher ε favors exploration.
 - Lower ε favors exploitation.
 - 0.1 is common
 - Can also vary/scale ε over time.
 - Can be used to logarithmically bound regret by limiting future exploration (decay)
- Feels a bit ad hoc. Why would you use it?

```python
on_choice():
    with probability 1-$\varepsilon$:
        pull the best arm so far
    else:
        pull a random arm
    update pulled arm stats
```
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm

\[
\text{on_choice()}: \\
\text{initialize()}: \\
\text{for each arm } i: \\
\quad \text{failures}[i] = 0 \\
\quad \text{successes}[i] = 0 \\
\text{for each arm } i: \\
\quad \text{sample from Beta(successes}[i]+1,\text{failures}[i]+1) \\
\quad \text{select } \arg\max_i \text{ samples}[i] \\
\quad \text{update successes and failures for } i \\
\]
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm

initialize():
for each arm i:
 - failures[i] = 0
 - successes[i] = 0

on_choice():
for each arm i:
 - sample from Beta(successes[i]+1, failures[i]+1)
 - select argmax$_i$ samples[i]
 - update successes and failures for i
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm

\[
\text{on_choice}():
\]
\[
\text{for each arm } i:
\]
\[
\begin{align*}
\text{failures}[i] &= 0 \\
\text{successes}[i] &= 0
\end{align*}
\]
\[
\text{sample from Beta}(\text{successes}[i]+1,\text{failures}[i]+1)
\]
\[
\text{select } \text{argmax}_i \text{ samples}[i]
\]
\[
\text{update successes and failures for } i
\]

\[
\text{initialize}():
\]
\[
\text{for each arm } i:
\]
\[
\begin{align*}
\text{failures}[i] &= 0 \\
\text{successes}[i] &= 0
\end{align*}
\]
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm

initialize():
 for each arm i:
 failures[i] = 0
 successes[i] = 0

ond_choice():
 for each arm i:
 sample from Beta(successes[i]+1, failures[i]+1)
 select argmax_i samples[i]
 update successes and failures for i
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm

\[
\text{on_choice}: \\
\text{for each arm } i: \\
\quad \text{sample from } \text{Beta}(\text{successes}[i]+1, \text{failures}[i]+1) \\
\quad \text{select } \arg\max_i \text{ samples}[i] \\
\quad \text{update successes and failures for } i
\]
Multi-Armed Bandits: Thompson Sampling

- Thompson sampling
 - Tends to behave well with delayed feedback
 - Choose each arm based on the probability of being the best arm

\[
\text{on_choice():}
\text{for each arm } i:
\text{sample from } \text{Beta}(\text{successes}[i]+1,\text{failures}[i]+1)
\text{select argmax}_i \text{samples}[i]
\text{update successes and failures for } i
\]

\[
\text{initialize():}
\text{for each arm } i:
\text{failures}[i] = 0
\text{successes}[i] = 0
\]

PDF Beta(4,1) PDF Beta(4,4) PDF Beta(2,4)
Contextual Bandits

• What if the reward likelihood depends on
 – History
 – Environmental state
Contextual Bandits

- What if the reward likelihood depends on
 - History
 - Environmental state

- *Contextual* Bandits are able to take features at time t into account
Other uses of bandits in software quality

- Fuzz testing
Other uses of bandits in software quality

- Fuzz testing
- Auto configuration / optimization
Other uses of bandits in software quality

- Fuzz testing
- Auto configuration / optimization
 - Finding optimal configurations for cloud workloads
Other uses of bandits in software quality

- Fuzz testing
- Auto configuration / optimization
 - Finding optimal configurations for cloud workloads
 - Command line options for compilers to improve performance
Other uses of bandits in software quality

- Fuzz testing
- Auto configuration / optimization
 - Finding optimal configurations for cloud workloads
 - Command line options for compilers to improve performance
 - Fine tuning for databases
Other uses of bandits in software quality

- Fuzz testing
- Auto configuration / optimization
 - Finding optimal configurations for cloud workloads
 - Command line options for compilers to improve performance
 - Fine tuning for databases
 - Hyperparameter tuning in machine learning
 - ...

Other uses of bandits in software quality

- Fuzz testing
- Auto configuration / optimization
 - Finding optimal configurations for cloud workloads
 - Command line options for compilers to improve performance
 - Fine tuning for databases
 - Hyperparameter tuning in machine learning
 - ...
- Verification & cryptanalysis
- ...

...
Choosing a solution

- **A/B Testing**
 - Can be robust as long as the sample is representative

- **Bandits**
 - Allow you to take advantage of results as they find the solution
 - Can enable adaptation over time rather than one shot optimality
Summary: A/B Testing & Bandits

- Hypothesis testing can help you choose one version of something over another

- Sequential strategies can allow for early stopping & peeking

- Bandit based techniques allow for optimizing expected benefit while exploring options