Recall that for Bayesian Networks, conditional independence was a bit complicated.
- d-separation with head-to-head links.

We would like to construct a graphical representation such that conditional independence is straightforward path checking.

Markov random fields (MRFs) contain one node per variable.

Undirected graph over these nodes.

Conditional independence will be given by simple separation, blockage by observing a node on a path.

- e.g., in above graph, $A \perp B|C$.

Graphical Models - Part II

Bishop PRML Ch. 8
Markov Blanket

- With this simple check for conditional independence, a **Markov blanket** is also simple
 - Recall Markov blanket MB of x_i is set of nodes such that x_i is conditionally independent from rest of graph given MB
 - Markov blanket is neighbours

MRF Factorization

- Remember that graphical models define a factorization of the joint distribution
- What should be the factorization so that we end up with the simple conditional independence check?
- For x_i and x_j not connected by an edge in graph: $x_i \perp \perp x_j | \{i, j\}$
- So there should not be any factor $\psi(x_i, x_j)$ in the factorized form of the joint

Cliquess

- A **clique** in a graph is a subset of nodes such that there is a link between every pair of nodes in the subset
- A **maximal clique** is a clique for which one cannot add another node and have the set remain a clique

MRF Joint Distribution

- Note that nodes in a clique cannot be made conditionally independent from each other
 - So defining factors $\psi(\cdot)$ on nodes in a clique is “safe”
- The joint distribution for a Markov random field is:
 \[
p(x_1, \ldots, x_K) = \frac{1}{Z} \prod_C \psi_C(x_C)
\]
 where x_C is the set of nodes in clique C, and the product runs over all maximal cliques
- Each $\psi_C(x_C) \geq 0$
- Z is a normalization constant
The joint distribution for a Markov random field is:

\[p(x_1, \ldots, x_4) = \frac{1}{Z} \prod C \psi_C(x_C) \]

\[= \frac{1}{Z} \psi_{123}(x_1, x_2, x_3) \psi_{234}(x_2, x_3, x_4) \]

Note that maximal cliques subsume smaller ones: \(\psi_{123}(x_1, x_2, x_3) \) could include \(\psi_{12}(x_1, x_2) \), though sometimes smaller cliques are explicitly used for clarity.

The joint distribution for a Markov random field is:

\[p(x_1, \ldots, x_K) = \frac{1}{Z} \prod C \psi_C(x_C) \]

Each \(\psi_{C}(x_{C}) \) is called a potential function.

\(Z \), the normalization constant, is called the partition function:

\[Z = \sum_{x_C} \prod C \psi_{C}(x_{C}) \]

\(Z \) is very costly to compute, since it is a sum/integral over all possible states for all variables in \(x \).

Don’t always need to evaluate it though, will cancel for computing conditional probabilities.

The definition of the joint:

\[p(x_1, \ldots, x_K) = \frac{1}{Z} \prod C \psi_C(x_C) \]

Note that we started with particular conditional independences.

We then formulated the factorization based on clique potentials.

This formulation resulted in the right conditional independences.

The converse is true as well, any distribution with the conditional independences given by the undirected graph can be represented using a product of clique potentials.

This is the Hammersley-Clifford theorem.

Often use exponential, which is non-negative, to define potential functions:

\[\psi_{C}(x_{C}) = \exp\{-E_{C}(x_{C})\} \]

Minus sign – by convention.

\(E_{C}(x_{C}) \) is called an energy function.

From physics, low energy = high probability.

This exponential representation is known as the Boltzmann distribution.
Energy Functions - Intuition

- Joint distribution nicely rearranges as
 \[p(x_1, \ldots, x_K) = \frac{1}{Z} \prod_c \psi_C(x_C) \]
 \[= \frac{1}{Z} \exp\left\{ - \sum_c E_C(x_C) \right\} \]

- Intuition about potential functions: \(\psi_C \) are describing good (low energy) sets of states for adjacent nodes
- An example of this is next

Image Denoising

- Consider the problem of trying to correct (denoise) an image that has been corrupted
- Assume image is binary
- Observed (noisy) pixel values \(y_i \in \{-1, +1\} \)
- Unobserved true pixel values \(x_i \in \{-1, +1\} \)

Image Denoising - Graphical Model

- Clique containing each true pixel value \(x_i \in \{-1, +1\} \) and observed value \(y_i \in \{-1, +1\} \)
 - Observed pixel value is usually same as true pixel value
 - Energy function \(-\eta x_i y_i, \eta > 0 \), lower energy (better) if \(x_i = y_i \)
- Cliques containing adjacent true pixel values \(x_i, x_j \)
 - Nearby pixel values are usually the same
 - Energy function \(-\beta x_i x_j, \beta > 0 \), lower energy (better) if \(x_i = x_j \)

Complete energy function:

\[E(x, y) = -\beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_i \]

Joint distribution:

\[p(x, y) = \frac{1}{Z} \exp\{-E(x, y)\} \]

Or, as potential functions

\[\psi_n(x_i, x_j) = \exp(\beta x_i x_j), \]

\[\psi_p(x_i, y_i) = \exp(\eta x_i y_i) \]

\[p(x, y) = \frac{1}{Z} \prod_{i,j} \psi_n(x_i, x_j) \prod_i \psi_p(x_i, y_i) \]
Image Denoising - Inference

- The denoising query is $\arg \max_x p(x|y)$
- Two approaches:
 - **Iterated conditional modes** (ICM): hill climbing in x, one variable x_i at a time
 - Simple to compute, Markov blanket is just observation plus neighbouring pixels
 - **Graph cuts**: formulate as max-flow/min-cut problem, exact inference (for this graph)

Converting Directed Graphs into Undirected Graphs

- Consider a simple directed chain graph:
 $$p(x) = p(x_1)p(x_2|x_1)p(x_3|x_2) \ldots p(x_N|x_{N-1})$$
- Can convert to undirected graph
 $$p(x) = \frac{1}{Z} \psi_{1,2}(x_1,x_2)\psi_{2,3}(x_2,x_3) \ldots \psi_{N-1,N}(x_{N-1},x_N)$$
 where $\psi_{1,2} = p(x_1)p(x_2|x_1)$, all other $\psi_{k-1,k} = p(x_k|x_{k-1})$,
 $Z = 1$

Converting Directed Graphs into Undirected Graphs

- The chain was straight-forward because for each conditional $p(x_i|p_a_i)$, nodes $x_i \cup p_a_i$ were contained in one clique
 - Hence we could define that clique potential to include that conditional
- For a general undirected graph we can force this to occur by "marrying" the parents
 - Add links between all parents in p_a_i
 - This process known as moralization, creating a moral graph

Strong Morals

- Start with directed graph on left
- Add undirected edges between all parents of each node
- Remove directionality from original edges
Constructing Potential Functions

- Initialize all potential functions to be 1
- With moral graph, for each $p(x_i|pa_i)$, there is at least one clique which contains all of $x_i \cup pa_i$
 - Multiply $p(x_i|pa_i)$ into potential function for one of these cliques
- $Z = 1$ again since:
 $$p(x) = \prod_C \psi_C(x) = \prod_i p(x_i|pa_i)$$
 which is already normalized

Markov Random Fields Inference

- Inference is the process of answering queries such as $p(x_i|x_x = e)$
- We will focus on computing marginal posterior distributions over single variables x_i using
 $$p(x_i|x_x = e) \propto p(x_i, x_x = e)$$
- The proportionality constant can be obtained by enforcing
 $$\sum_{x_i} p(x_i|x_x = e) = 1$$

Equivalence Between Graph Types

- Note that the moralized undirected graph loses some of the conditional independence statements of the directed graph
- Further, there are certain conditional independence assumptions which can be represented by directed graphs which cannot be represented by undirected graphs, and vice versa
- Directed graph: $A \perp \perp B|\emptyset$, $A \perp \perp B|C$, cannot be represented using undirected graph
- Undirected graph: $A \perp \perp B|\emptyset$, $A \perp \perp B|C \cup D$, $C \perp \perp D|A \cup B$ cannot be represented using directed graph

Inference

- Consider a simple undirected chain
- For inference, we want to compute $p(x_n|x_x = e)$
- First, we'll show how to compute $p(x_n)$
 - $p(x_n|x_x = e)$ will be a simple modification of this
Inference on a Chain

- The naive method of computing the marginal $p(x_n)$ is to write down the factored form of the joint, and marginalize (sum out) all other variables:

$$p(x_n) = \sum_{x_1} \ldots \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_N} p(x)$$
$$= \sum_{x_1} \ldots \sum_{x_{n-1}} \sum_{x_{n+1}} \ldots \sum_{x_N} \frac{1}{Z} \prod_C \psi_C(x_C)$$

- This would be slow – $O(K^N)$ work if each variable could take K values

Inference on a Chain

- However, due to the factorization terms in this summation can be rearranged nicely
- This will lead to efficient algorithms

Simple Algebra

- This efficiency comes from a very simple distributivity

$$ab + ac = a(b + c)$$

- Or more complicated version

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j = a_1 b_1 + a_1 b_2 + \ldots + a_n b_n$$
$$= (a_1 + \ldots + a_n)(b_1 + \ldots + b_n)$$

- Much faster to do right hand side ($2(n-1)$ additions, 1 multiplication) than left hand side (n^2 multiplications, $n^2 - 1$ additions)

A Simple Chain

- First consider a chain with 3 nodes, and computing $p(x_3)$:

$$p(x_3) = \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3)$$
$$= \sum_{x_2} \psi_{23}(x_2, x_3) \left[\sum_{x_1} \psi_{12}(x_1, x_2) \right]$$
Performing the sums

\[
p(x_3) = \sum_{x_2} \psi_23(x_2, x_3) \left[\sum_{x_1} \psi_12(x_1, x_2) \right]
\]

- For example, if \(x_i\) are binary:

\[
\psi_{12}(x_1, x_2) = x_1 \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \psi_{23}(x_2, x_3) = x_2 \begin{bmatrix} s & t \\ u & v \end{bmatrix}
\]

\[
\sum_{x_1} \psi_12(x_1, x_2) = [a + c \, b + d] \equiv \mu_{12}(x_2)
\]

\[
\psi_{23}(x_2, x_3) \times \mu_{12}(x_2) = x_2 \begin{bmatrix} s(a + c) & t(a + c) \\ u(b + d) & v(b + d) \end{bmatrix}
\]

\[
p(x_3) = [s(a + c) + u(b + d) \, t(a + c) + v(b + d)]
\]

More complicated chain

- Now consider a 5 node chain, again asking for \(p(x_5)\)

\[
p(x_5) = \sum_{x_1} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)
\]

\[
= \sum_{x_1} \sum_{x_2} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5)
\]

\[
= \left[\sum_{x_2} \sum_{x_1} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \right] \left[\sum_{x_4} \sum_{x_5} \psi_{34}(x_3, x_4) \psi_{45}(x_4, x_5) \right]
\]

- Each of these factors resembles the previous, and can be computed efficiently
 - Again \(O(NK^2)\) work

Complexity of Inference

- There were two types of operations
 - Summation \(\sum_{x_1} \psi_{12}(x_1, x_2)\)
 \(K \times K\) numbers in \(\psi_{12}\), takes \(O(K^2)\) time
 - Multiplication \(\psi_{23}(x_2, x_3) \times \mu_{12}(x_2)\)
 Again \(O(K^2)\) work

- For a chain of length \(N\), we repeat these operations \(N - 1\) times each
 - \(O(NK^2)\) work, versus \(O(K^N)\) for naive evaluation

Message Passing

- The factors can be thought of as messages being passed between nodes in the graph

\[
\mu_{12}(x_2) = \sum_{x_1} \psi_{12}(x_1, x_2)
\]

is a message passed from node \(x_1\) to node \(x_2\) containing all information in node \(x_1\)

- In general,

\[
\mu_{k-1,k}(x_k) = \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_k) \mu_{k-2,k-1}(x_{k-1})
\]

- Possible to do so because of conditional independence
Computing All Marginals

- Computing one marginal $p(x_n)$ takes $O(NK^2)$ time
- Naively running same algorithms for all nodes in a chain would take $O(N^2K^2)$ time
- But this isn’t necessary, same messages can be reused at all nodes in the chain
- Pass all messages from one end of the chain to the other, pass all messages in the other direction too
- Can compute marginal at any node by multiplying the two messages delivered to the node
 - $2(N-1)K^2$ work, twice as much as for just one node

Including Evidence

- If a node $x_{k-1} = e$ is observed, simply clamp to observed value rather than summing:
 $$\mu_{k-1,k}(x_k) = \sum_{x_{k-1}} \psi_{k-1,k}(x_k, x_{k-1}) \mu_{k-2,k-1}(x_{k-1})$$
 becomes
 $$\mu_{k-1,k}(x_k) = \psi_{k-1,k}(x_k = e, x_{k-1}) \mu_{k-2,k-1}(x_{k-1} = e)$$

Trees

- The algorithm for a tree-structured graph is very similar to that for chains
- Formulation in PRML uses factor graphs, we’ll just give the intuition here
- Consider calculating the marginal $p(x_n)$ for the center node of the graph at right
- Treat x_n as root of tree, pass messages from leaf nodes up to root
- Message passing similar to that in chains, but possibly multiple messages reaching a node
- With multiple messages, multiply them together
- As before, sum out variables
 $$\mu_{k-1,k}(x_k) = \sum_{x_{k-1}} \psi_{k-1,k}(x_k, x_{k-1}) \mu_{k-2,k-1}(x_{k-1})$$
 - Known as sum-product algorithm
 - Complexity still $O(NK^2)$
Markov Random Fields Inference

Most Likely Configuration

- A similar algorithm exists for finding
 \[\arg \max_{x_1, \ldots, x_N} p(x_1, \ldots, x_N) \]
- Replace summation operations with maximize operations
- Maximum of products at each node
- Known as max-sum, since often take log-probability to avoid underflow errors

General Graphs

- Junction tree algorithm is an exact inference method for arbitrary graphs
 - A particular tree structure defined over cliques of variables
 - Inference ends up being exponential in maximum clique size
 - Therefore slow in many cases
- Approximate inference techniques
 - Loopy belief propagation: run message passing scheme (sum-product) for a while
 - Sometimes works
 - Not guaranteed to converge
 - Variational methods: approximate desired distribution using analytically simple forms, find parameters to make these forms similar to actual desired distribution (Ch. 10, we won’t cover)
 - Sampling methods: represent desired distribution with a set of samples, as more samples are used, obtain more accurate representation (Ch. 11, we will cover)

Conclusion

- Readings: Ch. 8
- Graphical models depict conditional independence assumptions
- Directed graphs (Bayesian networks)
 - Factorization of joint distribution as conditional on node given parents
- Undirected graphs (Markov random fields)
 - Factorization of joint distribution as clique potential functions
- Inference algorithm sum-product, based on local message passing
 - Works for tree-structured graphs
 - Non-tree-structured graphs, either slow exact or approximate inference