Neural Networks

Greg Mori - CMPT 419/726

Bishop PRML Ch. 5
Neural Networks

- Neural networks arise from attempts to model human/animal brains
 - Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
 - Mathematical properties rather than plausibility
Applications of Neural Networks

• Many success stories for neural networks, old and new
 • Credit card fraud detection
 • Hand-written digit recognition
 • Face detection
 • Autonomous driving (CMU ALVINN)
 • Object recognition
 • Speech recognition
Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning
Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning
Feed-forward Networks

- We have looked at generalized linear models of the form:

\[y(x, w) = f \left(\sum_{j=1}^{M} w_j \phi_j(x) \right) \]

for fixed non-linear basis functions \(\phi(\cdot) \)

- We now extend this model by allowing adaptive basis functions, and learning their parameters

- In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs:

\[\phi_j(x) = f \left(\sum_{j=1}^{M} \ldots \right) \]
Feed-forward Networks

• We have looked at generalized linear models of the form:

\[y(x, w) = f \left(\sum_{j=1}^{M} w_j \phi_j(x) \right) \]

for fixed non-linear basis functions \(\phi(\cdot) \)

• We now extend this model by allowing adaptive basis functions, and learning their parameters

• In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs:

\[\phi_j(x) = f \left(\sum_{j=1}^{M} \ldots \right) \]
Feed-forward Networks

• Starting with input $x = (x_1, \ldots, x_D)$, construct linear combinations:

$$a_j = \sum_{i=1}^{D} w_j^{(1)} x_i + w_j^{(1)}$$

These a_j are known as activations

• Pass through an activation function $h(\cdot)$ to get output $z_j = h(a_j)$
 • Model of an individual neuron
Feed-forward Networks

- Starting with input \(x = (x_1, \ldots, x_D) \), construct linear combinations:

\[
a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}
\]

These \(a_j \) are known as activations.

- Pass through an activation function \(h(\cdot) \) to get output \(z_j = h(a_j) \)
 - Model of an individual neuron

from Russell and Norvig, AIMA2e
Feed-forward Networks

- Starting with input \(x = (x_1, \ldots, x_D) \), construct linear combinations:
 \[
 a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}
 \]

 These \(a_j \) are known as activations

- Pass through an activation function \(h(\cdot) \) to get output \(z_j = h(a_j) \)
 - Model of an individual neuron

from Russell and Norvig, AIMA2e
Activation Functions

- Can use a variety of activation functions
 - Sigmoidal (S-shaped)
 - Logistic sigmoid \(\frac{1}{1 + \exp(-a)} \) (useful for binary classification)
 - Hyperbolic tangent \(\tanh \)
 - Radial basis function \(z_j = \sum_i (x_i - w_{ji})^2 \)
 - Softmax
 - Useful for multi-class classification
 - Identity
 - Useful for regression
 - Threshold
 - Max, ReLU, Leaky ReLU, …

- Needs to be differentiable* for gradient-based learning (later)
- Can use different activation functions in each unit
Feed-forward Networks

- Connect together a number of these units into a feed-forward network (DAG)
- Above shows a network with one layer of hidden units
- Implements function:

\[
y_k(x, w) = h \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)
\]
Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning
Network Training

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- For regression, training data are \((x_n, t), t_n \in \mathbb{R}\)
 - Squared error naturally arises:
 \[
 E(w) = \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2
 \]
- For binary classification, this is another discriminative model, ML:
 \[
 p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}
 \]
 \[
 E(w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\}
 \]
Network Training

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- For regression, training data are \((x_n, t), t_n \in \mathbb{R}\)
 - Squared error naturally arises:
 \[
 E(w) = \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2
 \]
- For binary classification, this is another discriminative model, ML:
 \[
 p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}
 \]
 \[
 E(w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\}
 \]
Network Training

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- For regression, training data are \((x_n, t), t_n \in \mathbb{R}\)
 - Squared error naturally arises:
 \[
 E(w) = \sum_{n=1}^{N} \{ y(x_n, w) - t_n \}^2
 \]
- For binary classification, this is another discriminative model, ML:
 \[
 p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}
 \]
 \[
 E(w) = - \sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \} \]
Parameter Optimization

- For either of these problems, the error function $E(w)$ is nasty
 - Nasty = non-convex
 - Non-convex = has local minima
Descent Methods

- The typical strategy for optimization problems of this sort is a descent method:

\[w^{(\tau+1)} = w^{(\tau)} + \Delta w^{(\tau)} \]

- As we’ve seen before, these come in many flavours
 - Gradient descent \(\nabla E(w^{(\tau)}) \)
 - Stochastic gradient descent \(\nabla E_n(w^{(\tau)}) \)
 - Newton-Raphson (second order) \(\nabla^2 \)

- All of these can be used here, stochastic gradient descent is particularly effective
 - Redundancy in training data, escaping local minima
Descent Methods

- The typical strategy for optimization problems of this sort is a descent method:

\[w^{(\tau+1)} = w^{(\tau)} + \Delta w^{(\tau)} \]

- As we’ve seen before, these come in many flavours
 - Gradient descent \(\nabla E(w^{(\tau)}) \)
 - Stochastic gradient descent \(\nabla E_n(w^{(\tau)}) \)
 - Newton-Raphson (second order) \(\nabla^2 \)

- All of these can be used here, stochastic gradient descent is particularly effective
 - Redundancy in training data, escaping local minima
The typical strategy for optimization problems of this sort is a descent method:

\[\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)} \]

As we’ve seen before, these come in many flavours:

- Gradient descent \(\nabla E(\mathbf{w}^{(\tau)}) \)
- Stochastic gradient descent \(\nabla E_n(\mathbf{w}^{(\tau)}) \)
- Newton-Raphson (second order) \(\nabla^2 \)

All of these can be used here, stochastic gradient descent is particularly effective:

- Redundancy in training data, escaping local minima
The function $y(x_n, w)$ implemented by a network is complicated

- It isn’t obvious how to compute error function derivatives with respect to weights

Numerical method for calculating error derivatives, use finite differences:

$$\frac{\partial E_n}{\partial w_{ji}} \approx \frac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon}$$

How much computation would this take with W weights in the network?

- $O(W)$ per derivative, $O(W^2)$ total per gradient descent step
Computing Gradients

- The function $y(x_n, w)$ implemented by a network is complicated
 - It isn’t obvious how to compute error function derivatives with respect to weights
- Numerical method for calculating error derivatives, use finite differences:

 $$\frac{\partial E_n}{\partial w_{ji}} \approx \frac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon}$$

- How much computation would this take with W weights in the network?
 - $O(W)$ per derivative, $O(W^2)$ total per gradient descent step
Computing Gradients

- The function $y(x_n, w)$ implemented by a network is complicated
 - It isn’t obvious how to compute error function derivatives with respect to weights
- Numerical method for calculating error derivatives, use finite differences:
 \[
 \frac{\partial E_n}{\partial w_{ji}} \approx \frac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon}
 \]
- How much computation would this take with W weights in the network?
 - $O(W)$ per derivative, $O(W^2)$ total per gradient descent step
Computing Gradients

- The function $y(x_n, w)$ implemented by a network is complicated
 - It isn’t obvious how to compute error function derivatives with respect to weights
- Numerical method for calculating error derivatives, use finite differences:
 \[
 \frac{\partial E_n}{\partial w_{ji}} \approx \frac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon}
 \]
- How much computation would this take with W weights in the network?
 - $O(W)$ per derivative, $O(W^2)$ total per gradient descent step
Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning
Error Backpropagation

• Backprop is an efficient method for computing error derivatives $\frac{\partial E_n}{\partial w_{ji}}$
 • $O(W)$ to compute derivatives wrt all weights

• First, feed training example x_n forward through the network, storing all activations a_j

• Calculating derivatives for weights connected to output nodes is easy
 • e.g. For linear output nodes $y_k = \sum_i w_{ki}z_i$:

$$\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial}{\partial w_{ki}} \frac{1}{2}(y(n)_k - t(n)_k)^2 = (y(n)_k - t(n)_k)z(n)_i$$

• For hidden layers, propagate error backwards from the output nodes
Error Backpropagation

- Backprop is an efficient method for computing error derivatives $\frac{\partial E_n}{\partial w_{ji}}$.
 - $O(W)$ to compute derivatives wrt all weights.
- First, feed training example x_n forward through the network, storing all activations a_j.
- Calculating derivatives for weights connected to output nodes is easy.
 - e.g. For linear output nodes $y_k = \sum_i w_{ki} z_i$:

 $$\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial}{\partial w_{ki}} \frac{1}{2} (y(n),k - t(n),k)^2 = (y(n),k - t(n),k)z(n)i$$

- For hidden layers, propagate error backwards from the output nodes.
Error Backpropagation

- Backprop is an efficient method for computing error derivatives $\frac{\partial E_n}{\partial w_{ji}}$
 - $O(W)$ to compute derivatives wrt all weights
- First, feed training example x_n forward through the network, storing all activations a_j
- Calculating derivatives for weights connected to output nodes is easy
 - e.g. For linear output nodes $y_k = \sum_i w_{ki} z_i$:
 $$\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial}{\partial w_{ki}} \frac{1}{2} (y(n)_k - t(n)_k)^2 = (y(n)_k - t(n)_k)z(n)_i$$
- For hidden layers, propagate error backwards from the output nodes
Chain Rule for Partial Derivatives

• A “reminder”
• For \(f(x, y) \), with \(f \) differentiable wrt \(x \) and \(y \), and \(x \) and \(y \) differentiable wrt \(u \):

\[
\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}
\]
Error Backpropagation

- We can write

\[\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} E_n(a_{j_1}, a_{j_2}, \ldots, a_{j_m}) \]

where \(\{j_i\} \) are the indices of the nodes in the same layer as node \(j \).

- Using the chain rule:

\[\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} + \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{ji}} \]

where \(\sum_k \) runs over all other nodes \(k \) in the same layer as node \(j \).

- Since \(a_k \) does not depend on \(w_{ji} \), all terms in the summation go to 0

\[\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} \]
Error Backpropagation

• We can write

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} E_n(a_{j_1}, a_{j_2}, \ldots, a_{j_m})$$

where \(\{j_i\}\) are the indices of the nodes in the same layer as node \(j\).

• Using the chain rule:

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}} + \sum_k \frac{\partial E_n}{\partial a_{k}} \frac{\partial a_{k}}{\partial w_{ji}}$$

where \(\sum_k\) runs over all other nodes \(k\) in the same layer as node \(j\).

• Since \(a_k\) does not depend on \(w_{ji}\), all terms in the summation go to 0

$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}}$$
Error Backpropagation

- We can write
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} E_n(a_{j1}, a_{j2}, \ldots, a_{jm})
 \]
 where \(\{j_i\}\) are the indices of the nodes in the same layer as node \(j\).

- Using the chain rule:
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} + \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{ji}}
 \]
 where \(\sum_k\) runs over all other nodes \(k\) in the same layer as node \(j\).

- Since \(a_k\) does not depend on \(w_{ji}\), all terms in the summation go to 0
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}}
 \]
• Introduce error $\delta_j \equiv \frac{\partial E_n}{\partial a_j}$

$$\frac{\partial E_n}{\partial w_{ji}} = \delta_j \frac{\partial a_j}{\partial w_{ji}}$$

• Other factor is:

$$\frac{\partial a_j}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_k w_{jk} z_k = z_i$$
Error Backpropagation cont.

- Error δ_j can also be computed using chain rule:

$$\delta_j \equiv \frac{\partial E_n}{\partial a_j} = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j} \delta_k$$

where \sum_k runs over all nodes k in the layer after node j.

- Eventually:

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$$

- A weighted sum of the later error “caused” by this weight
Error Backpropagation cont.

- **Error** δ_j can also be computed using chain rule:

$$
\delta_j = \frac{\partial E_n}{\partial a_j} = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j} \delta_k
$$

where \sum_k runs over all nodes k in the layer after node j.

- Eventually:

$$
\delta_j = h'(a_j) \sum_k w_{kj} \delta_k
$$

- A weighted sum of the later error “caused” by this weight
Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning
Deep Learning

• Collection of important techniques to improve performance:
 • Multi-layer networks
 • Convolutional networks, parameter tying
 • Hinge activation functions (ReLU) for steeper gradients
 • Momentum
 • Drop-out regularization
 • Sparsity
 • Auto-encoders for unsupervised feature learning
 • ...

• **Scalability** is key, can use lots of data since stochastic gradient descent is memory-efficient, can be parallelized
Hand-written Digit Recognition

- MNIST - standard dataset for hand-written digit recognition
 - 60000 training, 10000 test images
LeNet-5, circa 1998

- LeNet developed by Yann LeCun et al.
 - **Convolutional neural network**
 - Local receptive fields (5x5 connectivity)
 - Subsampling (2x2)
 - Shared weights (reuse same 5x5 “filter”)
 - Breaking symmetry
ImageNet - standard dataset for object recognition in images (Russakovsky et al.)

- 1000 image categories, \(\approx 1.2 \text{ million training images} \) (ILSVRC 2013)
GoogLeNet, circa 2014

- GoogLeNet developed by Szegedy et al., CVPR 2015
- Modern deep network
- ImageNet top-5 error rate of 6.67% (later versions even better)
- Comparable to human performance (especially for fine-grained categories)
ResNet, circa 2015

- ResNet developed by He et al., ICCV 2015
- 152 layers
- ImageNet top-5 error rate of 3.57%
- Better than human performance (especially for fine-grained categories)
Key Component 1: Convolutional Filters

- Share parameters across network
- Reduce total number of parameters
- Provide translation invariance, useful for visual recognition
Key Component 2: Rectified Linear Units (ReLUs)

- **Vanishing gradient** problem
 - If derivatives very small, no/little progress via stochastic gradient descent
 - Occurs with sigmoid function when activation is large in absolute value

ReLU: \(h(a_j) = \max(0, a_j) \)
- Non-saturating, linear gradients (as long as non-negative activation on some training data)
- Sparsity inducing
Key Component 2: Rectified Linear Units (ReLUs)

- **Vanishing gradient** problem
 - If derivatives very small, no/little progress via stochastic gradient descent
 - Occurs with sigmoid function when activation is large in absolute value
- ReLU: \(h(a_j) = \max(0, a_j) \)
- Non-saturating, linear gradients (as long as non-negative activation on some training data)
- Sparsity inducing
Key Component 3: Many, Many Layers

- ResNet: ≈ 152 layers (“shortcut connections”)
- GoogLeNet: ≈ 27 layers (“Inception” modules)
- VGG Net: 16-19 layers (Simonyan and Zisserman, 2014)
- Supervision: 8 layers (Krizhevsky et al., 2012)
Key Component 4: Momentum

- Trick to escape plateaus / local minima
- Take exponential average of previous gradients
 \[
 \frac{\partial E_n^\tau}{\partial w_{ji}} = \frac{\partial E_n}{\partial w_{ji}} + \alpha \frac{\partial E_n^{\tau-1}}{\partial w_{ji}}
 \]
- Maintains progress in previous direction
Key Component 5: Asynchronous Stochastic Gradient Descent

- Big models won’t fit in memory
- Want to use compute clusters (e.g. 1000s of machines) to run stochastic gradient descent
- How to parallelize computation?
 - Ignore synchronization across machines
 - Just let each machine compute its own gradients and pass to a server storing current parameters
 - Ignore the fact that these updates are inconsistent
 - Seems to just work (e.g. Dean et al. NIPS 2012)
Key Component 6: Learning Rate Schedule

- How to set learning rate η?
 \[w^\tau = w^{\tau-1} + \eta \nabla w \]
- **Option 1**: Run until validation error plateaus. Drop learning rate by x%.
- **Option 2**: Adagrad, adaptive gradient. Per-element learning rate set based on local geometry (Duchi et al. 2010)
Key Component 7: Batch Norm

- Normalize data at each layer by whitening
- Ioffe and Szegedy 2015
Key Component 8: Data Augmentation

- Augment data with additional synthetic variants (10x amount of data)
- Or just use synthetic data, e.g. Sintel animated movie (Butler et al. 2012)
Key Component 9: Data and Compute

• Get lots of data (e.g. ImageNet)
• Get lots of compute (e.g. CPU cluster, GPUs)
• Cross-validate like crazy, train models for 2-3 weeks on a GPU
• Researcher gradient descent (RGD) or Graduate student descent (GSD): get 100s of researchers to each do this, trying different network structures
More information

- https://sites.google.com/site/deeplearningsummerschool
- http://tutorial.caffe.berkeleyvision.org/
- ufldl.stanford.edu/eccv10-tutorial

- Project ideas
 - Long short-term memory (LSTM) models for temporal data
 - Learning embeddings (word2vec, FaceNet)
 - Structured output (multiple outputs from a network)
 - Zero-shot learning (learning to recognize new concepts without training data)
 - Transfer learning (use data from one domain/task, adapt to another)
 - Network compression / run-time / power optimization
 - Distillation
Conclusion

- Readings: Ch. 5.1, 5.2, 5.3
- Feed-forward networks can be used for regression or classification
 - Similar to linear models, except with adaptive non-linear basis functions
 - These allow us to do more than e.g. linear decision boundaries
- Different error functions
- Learning is more difficult, error function not convex
 - Use stochastic gradient descent, obtain (good?) local minimum
- Backpropagation for efficient gradient computation