Neural Networks
Greg Mori - CMPT 419/726

Bishop PRML Ch. 5

- Neural networks arise from attempts to model human/animal brains
 - Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
 - Mathematical properties rather than plausibility

Neural Networks

Applications of Neural Networks

- Many success stories for neural networks, old and new
 - Credit card fraud detection
 - Hand-written digit recognition
 - Face detection
 - Autonomous driving (CMU ALVINN)
 - Object recognition
 - Speech recognition

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning
Feed-forward Networks

- We have looked at generalized linear models of the form:
 \[y(x, w) = f\left(\sum_{j=1}^{M} w_j \phi_j(x) \right) \]
 for fixed non-linear basis functions \(\phi(\cdot) \)
- We now extend this model by allowing adaptive basis functions, and learning their parameters
- In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs:
 \[\phi_j(x) = f\left(\sum_{i=1}^{D} w_{ji} x_i + w_{j0} \right) \]

Activation Functions

- Can use a variety of activation functions
 - Sigmoidal (S-shaped)
 - Logistic sigmoid \(\frac{1}{1 + \exp(-a)} \) (useful for binary classification)
 - Hyperbolic tangent \(\tanh \)
 - Radial basis function \(z_j = \sum (x_i - w_{ji})^2 \)
 - Softmax
 - Useful for multi-class classification
 - Identity
 - Useful for regression
 - Threshold
 - ...
- Needs to be differentiable for gradient-based learning (later)
- Can use different activation functions in each unit

Feed-forward Networks

- Starting with input \(x = (x_1, \ldots, x_D) \), construct linear combinations:
 \[a_j = \sum_{i=1}^{D} w^{(1)}_{ji} x_i + w^{(1)}_{j0} \]
 These \(a_j \) are known as activations
- Pass through an activation function \(h(\cdot) \) to get output \(z_j = h(a_j) \)
- Model of an individual neuron

Activation Functions

- Connect together a number of these units into a feed-forward network (DAG)
- Above shows a network with one layer of hidden units
- Implements function:
 \[y_k(x, w) = h \left(\sum_{j=1}^{M} w^{(2)}_{kj} h \left(\sum_{i=1}^{D} w^{(1)}_{ji} x_i + w^{(1)}_{j0} \right) + w^{(2)}_{k0} \right) \]
Network Training

- Given a specified network structure, how do we set its parameters (weights)?
- As usual, we define a criterion to measure how well our network performs, optimize against it.
- For regression, training data are \((x_n, t_n)\), \(t_n \in \mathbb{R}\).
- Squared error naturally arises:
 \[
 E(w) = \sum_{n=1}^{N} [y(x_n, w) - t_n]^2
 \]
- For binary classification, this is another discriminative model, ML:
 \[
 p(t|w) = \prod_{n=1}^{N} y_{t_n}^{t_n}(1 - y_{t_n})^{1-t_n}
 \]
 \[
 E(w) = -\sum_{n=1}^{N} \{ t_n \ln y_{t_n} + (1 - t_n) \ln(1 - y_{t_n}) \}
 \]

Descent Methods

- The typical strategy for optimization problems of this sort is a descent method:
 \[
 w^{(r+1)} = w^{(r)} + \Delta w^{(r)}
 \]
- As we’ve seen before, these come in many flavours:
 - Gradient descent \(\nabla E(w^{(r)})\)
 - Stochastic gradient descent \(\nabla E_s(w^{(r)})\)
 - Newton-Raphson (second order) \(\nabla^2\)
- All of these can be used here, stochastic gradient descent is particularly effective.
- Redundancy in training data, escaping local minima.

Parameter Optimization

- For either of these problems, the error function \(E(w)\) is nasty.
 - Nasty = non-convex
 - Non-convex = has local minima

Computing Gradients

- The function \(y(x_n, w)\) implemented by a network is complicated.
 - It isn’t obvious how to compute error function derivatives with respect to weights.
- Numerical method for calculating error derivatives, use finite differences:
 \[
 \frac{\partial E_{mn}}{\partial w_{ji}} \approx \frac{E_{mn}(w_{ji} + \epsilon) - E_{mn}(w_{ji} - \epsilon)}{2\epsilon}
 \]
- How much computation would this take with \(W\) weights in the network?
 - \(O(W)\) per derivative, \(O(W^2)\) total per gradient descent step.
Error Backpropagation

- Backprop is an efficient method for computing error derivatives \(\frac{\partial E}{\partial w_{ij}} \)
 - \(O(W) \) to compute derivatives wrt all weights
- First, feed training example \(x_n \) forward through the network, storing all activations \(a_j \)
- Calculating derivatives for weights connected to output nodes is easy
 - e.g. For linear output nodes \(y_k = \sum_i w_{ki} z_i \):
 \[
 \frac{\partial E_n}{\partial w_{ki}} = \frac{\partial}{\partial w_{ki}} \left[\frac{1}{2} (y_{(n),k} - t_{(n),k})^2 \right] = (y_{(n),k} - t_{(n),k}) z_i
 \]
- For hidden layers, propagate error backwards from the output nodes

Chain Rule for Partial Derivatives

- A “reminder”
- For \(f(x,y) \), with \(f \) differentiable wrt \(x \) and \(y \), and \(x \) and \(y \) differentiable wrt \(u \):
 \[
 \frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}
 \]

Error Backpropagation

- We can write
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} E_n(a_1, a_2, \ldots, a_m)
 \]
 where \(\{j_i\} \) are the indices of the nodes in the same layer as node \(j \)
- Using the chain rule:
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} + \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial w_{ji}}
 \]
 where \(\sum_k \) runs over all other nodes \(k \) in the same layer as node \(j \).
- Since \(a_k \) does not depend on \(w_{ji} \), all terms in the summation go to 0
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}}
 \]

Error Backpropagation cont.

- Introduce error \(\delta_j = \frac{\partial E_n}{\partial a_j} \)
 \[
 \frac{\partial E_n}{\partial w_{ji}} = \delta_j \frac{\partial a_j}{\partial w_{ji}}
 \]
- Other factor is:
 \[
 \frac{\partial a_j}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} \sum_k w_{jk} z_k = z_i
 \]
Error Backpropagation cont.

- Error δ_j can also be computed using chain rule:

 $\delta_j \equiv \frac{\partial E_n}{\partial a_j} = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$

 where \sum_k runs over all nodes k in the layer after node j.

- Eventually:

 $\delta_j = h'(a_j) \sum_k w_{jk} \delta_k$

 - A weighted sum of the later error “caused” by this weight

Deep Learning

- Collection of important techniques to improve performance:
 - Multi-layer networks
 - Convolutional networks, parameter tying
 - Hinge activation functions (ReLU) for steeper gradients
 - Momentum
 - Drop-out regularization
 - Sparsity
 - Auto-encoders for unsupervised feature learning
 - ...

 - Scalability is key, can use lots of data since stochastic gradient descent is memory-efficient, can be parallelized

Hand-written Digit Recognition

- MNIST - standard dataset for hand-written digit recognition
 - 60000 training, 10000 test images

LeNet-5, circa 1998

- LeNet developed by Yann LeCun et al.
 - Convolutional neural network
 - Local receptive fields (5x5 connectivity)
 - Subsampling (2x2)
 - Shared weights (reuse same 5x5 “filter”)
 - Breaking symmetry
ImageNet

- ImageNet - standard dataset for object recognition in images (Russakovsky et al.)
 - 1000 image categories, ≈1.2 million training images (ILSVRC 2013)

GoogLeNet, circa 2014

- GoogLeNet developed by Szegedy et al., CVPR 2015
- Modern deep network
- ImageNet top-5 error rate of 6.67% (later versions even better)
- Comparable to human performance (especially for fine-grained categories)

ResNet, circa 2015

- ResNet developed by He et al., ICCV 2015
 - 152 layers
 - ImageNet top-5 error rate of 3.57%
 - Better than human performance (especially for fine-grained categories)

Key Component 1: Convolutional Filters

- Share parameters across network
- Reduce total number of parameters
- Provide translation invariance, useful for visual recognition
Key Component 2: Rectified Linear Units (ReLUs)

- **Vanishing gradient** problem
 - If derivatives very small, no/little progress via stochastic gradient descent
 - Occurs with sigmoid function when activation is large in absolute value
- ReLU: \(h(a_j) = \max(0, a_j) \)
- Non-saturating, linear gradients (as long as non-negative activation on some training data)
- Sparsity inducing

Key Component 3: Many, Many Layers

- ResNet: \(\approx 152 \) layers (“shortcut connections”)
- GoogLeNet: \(\approx 27 \) layers (“Inception” modules)
- VGG Net: 16-19 layers (Simonyan and Zisserman, 2014)
- Supervision: 8 layers (Krizhevsky et al., 2012)

Key Component 4: Momentum

- Trick to escape plateaus / local minima
- Take exponential average of previous gradients
 \[
 \frac{\partial E_n}{\partial w_{ji}}^\tau = \frac{\partial E_n}{\partial w_{ji}}^\tau + \alpha \frac{\partial E_n}{\partial w_{ji}}^{\tau-1}
 \]
- Maintains progress in previous direction

Key Component 5: Asynchronous Stochastic Gradient Descent

- Big models won’t fit in memory
- Want to use compute clusters (e.g. 1000s of machines) to run stochastic gradient descent
- How to parallelize computation?
- Ignore synchronization across machines
 - Just let each machine compute its own gradients and pass to a server storing current parameters
 - Ignore the fact that these updates are inconsistent
 - Seems to just work (e.g. Dean et al. NIPS 2012)
Key Component 6: Learning Rate Schedule

- How to set learning rate η?

 $$w^t = w^{t-1} - \eta \nabla w$$

- Option 1: Run until validation error plateaus. Drop learning rate by x%

- Option 2: Adagrad, adaptive gradient. Per-element learning rate set based on local geometry (Duchi et al. 2010)

Key Component 7: Data Augmentation

- Augment data with additional synthetic variants (10x amount of data)
- Or just use synthetic data, e.g. Sintel animated movie (Butler et al. 2012)

Key Component 8: Data and Compute

- Get lots of data (e.g. ImageNet)
- Get lots of compute (e.g. CPU cluster, GPUs)
- Cross-validate like crazy, train models for 2-3 weeks on a GPU
- Researcher gradient descent (RGD) or Graduate student descent (GSD): get 100s of researchers to each do this, trying different network structures

More information

- https://sites.google.com/site/deeplearningsummerschool
- ufldl.stanford.edu/eccv10-tutorial
- Prof. Oliver Schulte’s CMPT880: Deep Learning
- Project ideas
 - Long short-term memory (LSTM) models for temporal data
 - Learning embeddings (word2vec, FaceNet)
 - Structured output (multiple outputs from a network)
 - Zero-shot learning (learning to recognize new concepts without training data)
 - Transfer learning (use data from one domain/task, adapt to another)
Conclusion

- **Readings**: Ch. 5.1, 5.2, 5.3
- **Feed-forward networks** can be used for regression or classification
 - Similar to linear models, except with adaptive non-linear basis functions
 - These allow us to do more than e.g. linear decision boundaries
- **Different error functions**
- **Learning is more difficult, error function not convex**
 - Use stochastic gradient descent, obtain (good?) local minimum
- **Backpropagation** for efficient gradient computation