• Given training set \(\{(x_1, t_1), \ldots, (x_N, t_N)\} \)
• \(t_i \) is continuous: regression
• For now, assume \(t_i \in \mathbb{R}, x_i \in \mathbb{R}^D \)
• E.g. \(t_i \) is stock price, \(x_i \) contains company profit, debt, cash flow, gross sales, number of spam emails sent, . . .
Linear Regression

- Simplest linear model for regression
 \[y(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_D x_D \]

- Remember, we’re learning \(w \)
- Set \(w \) so that \(y(x, w) \) aligns with target value in training data
- This is a very simple model, limited in what it can do

Linear Basis Function Models

- Simplest linear model
 \[y(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_D x_D \]
 was linear in \(x \) (\(* \)) and \(w \)
- Linear in \(w \) is what will be important for simple algorithms
- Extend to include fixed non-linear functions of data
 \[y(x, w) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_{M-1} \phi_{M-1}(x) \]
- Linear combinations of these basis functions also linear in parameters

Linear Basis Function Models

- Bias parameter allows fixed offset in data
 \[y(x, w) = \sum_{bias} w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_{M-1} \phi_{M-1}(x) \]
- Think of simple 1-D \(x \):
 \[y(x, w) = w_0 + w_1 x \]
- For notational convenience, define \(\phi_0(x) = 1 \):
 \[y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x) = w^T \phi(x) \]

Function for regression \(y(x, w) \) is non-linear function of \(x \), but linear in \(w \):
\[y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x) = w^T \phi(x) \]

- Polynomial regression is an example of this
- Order \(M \) polynomial regression, \(\phi_j(x) = ? \)
- \(\phi_j(x) = x^j \):
 \[y(x, w) = w_0 x^0 + w_1 x^1 + \ldots + w_M x^M \]
Basis Functions: Feature Functions

- Often we extract features from x
 - An intuitive way to think of $\phi_j(x)$ is as feature functions
- E.g. Automatic CMPT726 project report grading system
 - x is text of report: In this project we apply the algorithm of Mori [2] to recognizing blue objects. We test this algorithm on pictures of you and I from my holiday photo collection. ...
 - $\phi_1(x)$ is count of occurrences of Mori [2]
 - $\phi_2(x)$ is count of occurrences of you and I
 - Regression grade $y(x, w) = 20\phi_1(x) - 10\phi_2(x)$

Example - Gaussian Basis Functions: Temperature

- Use Gaussian basis functions, regression on temperature
- $\mu_1 =$ Vancouver, $\mu_2 =$ San Francisco, $\mu_3 =$ Oakland

Other Non-linear Basis Functions

- Polynomial $\phi_j(x) = x^j$
- Gaussians $\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2\sigma^2}\right\}$
- Sigmoidal $\phi_j(x) = \frac{1}{1 + \exp((\mu_j - x)/\sigma)}$
Example - Gaussian Basis Functions: Temperature

- $\mu_1 = \text{Vancouver}$, $\mu_2 = \text{San Francisco}$, $\mu_3 = \text{Oakland}$
- Temperature in $x = \text{Seattle}$? $y(x, w) = w_1 \exp\left\{-\frac{(x - \mu_1)^2}{2s^2}\right\} + w_2 \exp\left\{-\frac{(x - \mu_2)^2}{2s^2}\right\} + w_3 \exp\left\{-\frac{(x - \mu_3)^2}{2s^2}\right\}$

Example - Gaussian Basis Functions: Temperature

- $\mu_1 = \text{Vancouver}$, $\mu_2 = \text{San Francisco}$, $\mu_3 = \text{Oakland}$
- Temperature in $x = \text{Seattle}$? $y(x, w) = w_1 \exp\left\{-\frac{(x - \mu_1)^2}{2s^2}\right\} + w_2 \exp\left\{-\frac{(x - \mu_2)^2}{2s^2}\right\} + w_3 \exp\left\{-\frac{(x - \mu_3)^2}{2s^2}\right\}$
- Compute distances to all μ, $y(x, w) \approx w_1$

Example - Gaussian Basis Functions: 726 Report Grading

- Define:
 - $\mu_1 = \text{Crime and Punishment}$
 - $\mu_2 = \text{Animal Farm}$
 - $\mu_3 = \text{Some paper by Mori}$
- Learn weights:
 - $w_1 = \text{?}$
 - $w_2 = \text{?}$
 - $w_3 = \text{?}$
- Grade a project report x:
 - Measure similarity of x to each μ, Gaussian, with weights: $y(x, w) = w_1 \exp\left\{-\frac{(x - \mu_1)^2}{2s^2}\right\} + w_2 \exp\left\{-\frac{(x - \mu_2)^2}{2s^2}\right\} + w_3 \exp\left\{-\frac{(x - \mu_3)^2}{2s^2}\right\}$
 - The Gaussian basis function models end up similar to template matching

Example - Gaussian Basis Functions

- Could define $\phi_j(x) = \exp\left\{-\frac{(x - x_j)^2}{2s^2}\right\}$
 - Gaussian around each training data point x_j, N of them
- Could use for modelling temperature or resource availability at spatial location x
- Overfitting - interpolates data
- Example of a kernel method, more later
Loss Functions for Regression

- We want to find the “best” set of coefficients w
- Recall, one way to define “best” was minimizing squared error:
 $$E(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$$
- We will now look at another way, based on maximum likelihood

Gaussian Noise Model for Regression

- We are provided with a training set $\{(x_i, t_i)\}$
- Let’s assume t arises from a deterministic function plus Gaussian distributed (with precision β) noise:
 $$t = y(x, w) + \epsilon$$
- The probability of observing a target value t is then:
 $$p(t|x, w, \beta) = \mathcal{N}(t|y(x, w), \beta^{-1})$$
- Notation: $\mathcal{N}(x|\mu, \sigma^2)$; x drawn from Gaussian with mean μ, variance σ^2

Maximum Likelihood for Regression

- The likelihood of data $t = \{t_i\}$ using this Gaussian noise model is:
 $$p(t|w, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|w^T \phi(x_n), \beta^{-1})$$
- The log-likelihood is:
 $$\ln p(t|w, \beta) = \ln \prod_{n=1}^{N} \frac{\sqrt{\beta}}{\sqrt{2\pi}} \exp\left(-\frac{\beta}{2} (t_n - w^T \phi(x_n))^2\right)$$
 $$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \frac{\beta}{2} \sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2$$
- Sum of squared errors is maximum likelihood under a Gaussian noise model

Finding Optimal Weights

- How do we maximize likelihood wrt w (or minimize squared error)?
- Take gradient of log-likelihood wrt w:
 $$\frac{\partial}{\partial w} \ln p(t|w, \beta) = \beta \sum_{n=1}^{N} (t_n - w^T \phi(x_n)) \phi(x_n)$$
- In vector form:
 $$\nabla \ln p(t|w, \beta) = \beta \sum_{n=1}^{N} (t_n - w^T \phi(x_n)) \phi(x_n)$$
Finding Optimal Weights

- Set gradient to 0:
 \[0^T = \sum_{n=1}^{N} t_n \phi(x_n)^T - w^T \left(\sum_{n=1}^{N} \phi(x_n) \phi(x_n)^T \right) \]

- Maximum likelihood estimate for \(w \):
 \[w_{ML} = (\Phi^T \Phi)^{-1} \Phi^T t \]

 \[\Phi = \begin{pmatrix} \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_{M-1}(x_1) \\ \phi_0(x_2) & \phi_1(x_2) & \cdots & \phi_{M-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_{M-1}(x_N) \end{pmatrix} \]

- \(\Phi^T \Phi \) known as the pseudo-inverse (numpy.linalg.pinv in python)

Geometry of Least Squares

- \(t = (t_1, \ldots, t_N) \) is the target value vector
- \(S \) is space spanned by \(\varphi_j = (\phi_j(x_1), \ldots, \phi_j(x_N)) \)
- Solution \(y \) lies in \(S \)
- Least squares solution is orthogonal projection of \(t \) onto \(S \)
- Can verify this by looking at \(y = \Phi w_{ML} = \Phi \Phi^T t = Pt \)
 \[P^2 = P, P = P^T \]

Sequential Learning

- In practice \(N \) might be huge, or data might arrive online
- Can use a gradient descent method:
 - Start with initial guess for \(w \)
 - Update by taking a step in gradient direction \(\nabla E \) of error function
- Modify to use stochastic / sequential gradient descent:
 - If error function \(E = \sum E_n \) (e.g. least squares)
 - Update by taking a step in gradient direction \(\nabla E_n \) for one example
 - Details about step size are important – decrease step size at the end

Regularization

- Last week we discussed regularization as a technique to avoid over-fitting:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + \frac{\lambda}{2} \| w \|^2 \]

- Next on the menu:
 - Other regularizers
 - Bayesian learning and quadratic regularizer
Other Regularizers

- Can use different norms for regularizer:
 \[\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, w) - t_n \}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q \]
 - e.g. \(q = 2 \) – ridge regression
 - e.g. \(q = 1 \) – lasso
 - math is easiest with ridge regression

Optimization with a Quadratic Regularizer

- With \(q = 2 \), total error still a nice quadratic:
 \[\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x_n, w) - t_n \}^2 + \frac{\lambda}{2} w^T w \]
- Calculus ...
 \[w = \left(\lambda I + \Phi^T \Phi \right)^{-1} \Phi^T t \]
 - Similar to unregularized least squares
 - Advantage \((\lambda I + \Phi^T \Phi)\) is well conditioned so inversion is stable

Bayesian Linear Regression

- Last week we saw an example of a Bayesian approach
 - Coin tossing - prior on parameters
- We will now do the same for linear regression
 - Prior on parameter \(w \)
- There will turn out to be a connection to regularization

Ridge Regression vs. Lasso

- Ridge regression aka parameter shrinkage
 - Weights \(w \) shrink back towards origin
- Lasso leads to sparse models
 - Components of \(w \) tend to 0 with large \(\lambda \) (strong regularization)
 - Intuitively, once minimum achieved at large radius, minimum is on \(w_j = 0 \)
Bayesian Linear Regression

- Start with a prior over parameters w
 - Conjugate prior is a Gaussian:
 $$p(w) = \mathcal{N}(w; 0, \alpha^{-1}I)$$
 - This simple form will make math easier; can be done for arbitrary Gaussian too
- Data likelihood, Gaussian model as before:
 $$p(t | x, w, \beta) = \mathcal{N}(t | y(x, w), \beta^{-1})$$

Posterior distribution on w:

$$p(w | t) \propto \left(\prod_{n=1}^{N} p(t_n | x_n, w, \beta) \right) p(w)$$

$$= \left[\prod_{n=1}^{N} \sqrt{\beta} \exp\left(-\frac{\beta}{2} (t_n - w^T \phi(x_n))^2 \right) \right] \left(\frac{\alpha}{2\pi} \right)^{\frac{M}{2}} \exp\left(-\frac{\alpha}{2} w^T w \right)$$

- Take the log:
 $$- \ln p(w | t) = \frac{\beta}{2} \sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2 + \frac{\alpha}{2} w^T w + \text{const}$$

- L_2 regularization is maximum a posteriori (MAP) with a Gaussian prior.
 - $\lambda = \alpha / \beta$

Bayesian Linear Regression - Intuition

- Simple example $x, t \in \mathbb{R}$,
 $$y(x, w) = w_0 + w_1 x$$
- Start with Gaussian prior in parameter space
- Samples shown in data space
- Receive data points (blue circles in data space)
- Compute likelihood
- Posterior is prior (or prev. posterior) times likelihood

Predictive Distribution

- Single estimate of w (ML or MAP) doesn’t tell whole story
- We have a distribution over w, and can use it to make predictions
- Given a new value for x, we can compute a distribution over t:
 $$p(t | t, \alpha, \beta) = \int p(t | w, \alpha, \beta) dw$$
 $$p(t | t, \alpha, \beta) = \int \frac{p(t | w, \alpha, \beta) p(w | t, \alpha, \beta) dw}{p(t | \alpha, \beta)}$$

- i.e. For each value of t, let it make a prediction, multiply by its probability, sum over all w
- For arbitrary models as the distributions, this integral may not be computationally tractable
Predictive Distribution

• With the Gaussians we’ve used for these distributions, the predictive distribution will also be Gaussian
 • (math on convolutions of Gaussians)
• Green line is true (unobserved) curve, blue data points, red line is mean, pink one standard deviation
 • Uncertainty small around data points
 • Pink region shrinks with more data

Bayesian Model Selection

• So what do the Bayesians say about model selection?
 • Model selection is choosing model M_i, e.g. degree of polynomial, type of basis function ϕ
 • Don't select, just integrate
 \[
 p(t|\mathbf{x}, \mathcal{D}) = \sum_{i=1}^{L} p(t|\mathbf{x}, M_i, \mathcal{D}) p(M_i|\mathcal{D})
 \]
 • Average together the results of all models
 • Could choose most likely model a posteriori $p(M_i|\mathcal{D})$
 • More efficient, approximation

Bayesian Model Selection

• How do we compute the posterior over models?
 \[
 p(M_i|\mathcal{D}) \propto p(\mathcal{D}|M_i)p(M_i)
 \]
 • Another likelihood + prior combination
 • Likelihood:
 \[
 p(\mathcal{D}|M_i) = \int p(\mathcal{D}|\mathbf{w}, M_i)p(\mathbf{w}|M_i)d\mathbf{w}
 \]

Conclusion

• Readings: Ch. 3.1, 3.1.1–3.1.4, 3.3.1–3.3.2, 3.4
• Linear Models for Regression
 • Linear combination of (non-linear) basis functions
 • Fitting parameters of regression model
 • Least squares
 • Maximum likelihood (can be = least squares)
 • Controlling over-fitting
 • Regularization
 • Bayesian, use prior (can be = regularization)
• Model selection
 • Cross-validation (use held-out data)
 • Bayesian (use model evidence, likelihood)