• Given training set \(\{(x_1, t_1), \ldots, (x_N, t_N)\} \)
• \(t \) is continuous: regression
• For now, assume \(t_i \in \mathbb{R} \), \(x_i \in \mathbb{R}^D \)
• E.g. \(t_i \) is stock price, \(x_i \) contains company profit, debt, cash flow, gross sales, number of spam emails sent, . . .

A function \(f(\cdot) \) is linear if
\[
f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)
\]

Linear functions will lead to simple algorithms, so let’s see what we can do with them.
Regression Linear Basis Function Models

Linear Regression

- Simplest linear model for regression
 \[y(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_D x_D \]

- Remember, we’re learning \(w \)
- Set \(w \) so that \(y(x, w) \) aligns with target value in training data
- This is a very simple model, limited in what it can do

Linear Basis Function Models

- Simplest linear model
 \[y(x, w) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_D x_D \]
 was linear in \(x \) (\(^\ast\)) and \(w \)
- Linear in \(w \) is what will be important for simple algorithms
- Extend to include fixed non-linear functions of data
 \[y(x, w) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_{M-1} \phi_{M-1}(x) \]
- Linear combinations of these basis functions also linear in parameters

Linear Basis Function Models

- Bias parameter allows fixed offset in data
 \[y(x, w) = \underbrace{w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots + w_{M-1} \phi_{M-1}(x)}_{\text{bias}} \]
- Think of simple 1-D \(x \):
 \[y(x, w) = w_0 \underbrace{+ w_1 x}_{\text{intercept}} \underbrace{+ w_1 x}_{\text{slope}} \]
- For notational convenience, define \(\phi_0(x) = 1 \):
 \[y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x) = w^T \phi(x) \]
Basis Functions: Feature Functions

- Often we extract features from x
 - An intuitive way to think of $\phi_j(x)$ is as feature functions
- E.g. Automatic CMPT726 project report grading system
 - x is text of report: In this project we apply the algorithm of Mori [2] to recognizing blue objects. We test this algorithm on pictures of you and I from my holiday photo collection. ...
 - $\phi_1(x)$ is count of occurrences of Mori [2]
 - $\phi_2(x)$ is count of occurrences of you and I
 - Regression grade $y(x, w) = 20\phi_1(x) - 10\phi_2(x)$

Other Non-linear Basis Functions

- Polynomial $\phi_j(x) = x^j$
- Gaussians $\phi_j(x) = \exp\left\{-\frac{(x - \mu_j)^2}{2\sigma^2}\right\}$
- Sigmoidal $\phi_j(x) = \frac{1}{1 + \exp((\mu_j - x)/\sigma)}$

Example - Gaussian Basis Functions: Temperature

- Use Gaussian basis functions, regression on temperature
- $\mu_1 = \text{Vancouver}, \mu_2 = \text{San Francisco}, \mu_3 = \text{Oakland}$
Regression Linear Basis Function Models

Loss Functions for Regression
Finding Optimal Weights
Regularization
Bayesian Linear Regression

Example - Gaussian Basis Functions: Temperature

- \(\mu_1 = \) Vancouver, \(\mu_2 = \) San Francisco, \(\mu_3 = \) Oakland
- Temperature in \(x = \) Seattle? \(y(x, w) = \)
 \[
 w_1 \exp\left(-\frac{(x-\mu_1)^2}{2s^2}\right) + w_2 \exp\left(-\frac{(x-\mu_2)^2}{2s^2}\right) + w_3 \exp\left(-\frac{(x-\mu_3)^2}{2s^2}\right)
 \]
- Compute distances to all \(\mu_i \), \(y(x, w) \approx w_1 \)

Example - Gaussian Basis Functions: 726 Report Grading

- Define:
 - \(\mu_1 = \) Crime and Punishment
 - \(\mu_2 = \) Animal Farm
 - \(\mu_3 = \) Some paper by Mori
- Learn weights:
 - \(w_1 = ? \)
 - \(w_2 = ? \)
 - \(w_3 = ? \)
- Grade a project report \(x \):
 - Measure similarity of \(x \) to each \(\mu_i \), Gaussian, with weights:
 \[
 y(x, w) = \]
 \[
 w_1 \exp\left(-\frac{(x-\mu_1)^2}{2s^2}\right) + w_2 \exp\left(-\frac{(x-\mu_2)^2}{2s^2}\right) + w_3 \exp\left(-\frac{(x-\mu_3)^2}{2s^2}\right)
 \]
 - The Gaussian basis function models end up similar to template matching

Loss Functions for Regression

- We want to find the “best” set of coefficients \(w \)
- Recall, one way to define “best” was minimizing squared error:
 \[
 E(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2
 \]
- We will now look at another way, based on maximum likelihood
Gaussian Noise Model for Regression

- We are provided with a training set \(\{(x_i, t_i)\} \)
- Let’s assume \(t \) arises from a deterministic function plus Gaussian distributed (with precision \(\beta \)) noise:
 \[
 t = y(x, w) + \epsilon
 \]
- The probability of observing a target value \(t \) is then:
 \[
 p(t|x, w, \beta) = \mathcal{N}(t|y(x, w), \beta^{-1})
 \]
- Notation: \(\mathcal{N}(x|\mu, \sigma^2) \); \(x \) drawn from Gaussian with mean \(\mu \), variance \(\sigma^2 \)

Maximum Likelihood for Regression

- The likelihood of data \(t = \{t_i\} \) using this Gaussian noise model is:
 \[
 p(t|w, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|w^T \phi(x_n), \beta^{-1})
 \]
- The log-likelihood is:
 \[
 \ln p(t|w, \beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \frac{1}{2} \beta \sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2
 \]
- Sum of squared errors is maximum likelihood under a Gaussian noise model

Finding Optimal Weights

- How do we maximize likelihood wrt \(w \) (or minimize squared error)?
- Take gradient of log-likelihood wrt \(w \):
 \[
 \frac{\partial}{\partial w} \ln p(t|w, \beta) = \beta \sum_{n=1}^{N} (t_n - w^T \phi(x_n)) \phi(x_n)
 \]
- In vector form:
 \[
 \nabla \ln p(t|w, \beta) = \beta \Phi^T t
 \]
 \[
 \Phi = \begin{pmatrix}
 \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_{M-1}(x_1) \\
 \phi_0(x_2) & \phi_1(x_2) & \cdots & \phi_{M-1}(x_2) \\
 \cdots & \cdots & \cdots & \cdots \\
 \phi_0(x_N) & \phi_1(x_N) & \cdots & \phi_{M-1}(x_N)
 \end{pmatrix}
 \]
 \[
 \Phi^\dagger = (\Phi^T \Phi)^{-1} \Phi^T
 \]
 known as the pseudo-inverse (numpy.linalg.pinv in python)
Geometry of Least Squares

- $t = (t_1, \ldots, t_N)$ is the target value vector
- S is space spanned by $\varphi_j = (\phi_j(x_1), \ldots, \phi_j(x_N))$
- Solution y lies in S
- Least squares solution is orthogonal projection of t onto S
- Can verify this by looking at $y = \Phi w_{ML} = \Phi \Phi^+ t = Pt$
 - $P^2 = P$, $P = P^T$

Sequential Learning

- In practice N might be huge, or data might arrive online
- Can use a gradient descent method:
 - Start with initial guess for w
 - Update by taking a step in gradient direction ∇E of error function
- Modify to use stochastic / sequential gradient descent:
 - If error function $E = \sum E_n$ (e.g. least squares)
 - Update by taking a step in gradient direction ∇E_n for one example
 - Details about step size are important – decrease step size at the end

Regularization

- Last week we discussed regularization as a technique to avoid over-fitting:
 \[
 \tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + \frac{\lambda}{2} ||w||^2_{\text{regularizer}}
 \]

- Next on the menu:
 - Other regularizers
 - Bayesian learning and quadratic regularizer

Other Regularizers

- Can use different norms for regularizer:
 \[
 \tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q
 \]
 - e.g. $q = 2$ – ridge regression
 - e.g. $q = 1$ – lasso
 - math is easiest with ridge regression
Optimization with a Quadratic Regularizer

- With $q = 2$, total error still a nice quadratic:
\[\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + \frac{\lambda}{2} w^T w \]

- Calculus ...
\[w = (\lambda I + \Phi^T \Phi)\text{regularized}^{-1} \Phi^T t \]

- Similar to unregularized least squares
- Advantage $(\lambda I + \Phi^T \Phi)$ is well conditioned so inversion is stable

Ridge Regression vs. Lasso

- Ridge regression aka parameter shrinkage
 - Weights w shrink back towards origin
- Lasso leads to sparse models
 - Components of w tend to 0 with large λ (strong regularization)
 - Intuitively, once minimum achieved at large radius, minimum is on $w_1 = 0$

Bayesian Linear Regression

- Last week we saw an example of a Bayesian approach
 - Coin tossing - prior on parameters
- We will now do the same for linear regression
 - Prior on parameter w
- There will turn out to be a connection to regularization

Bayesian Linear Regression

- Start with a prior over parameters w
 - Conjugate prior is a Gaussian:
\[p(w) = \mathcal{N}(w | 0, \alpha^{-1} I) \]
 - This simple form will make math easier; can be done for arbitrary Gaussian too
- Data likelihood, Gaussian model as before:
\[p(t|x, w, \beta) = \mathcal{N}(t(y(x, w), \beta^{-1}) \]
Bayesian Linear Regression

- Posterior distribution on w:
 \[p(w|t) \propto \left(\prod_{n=1}^{N} p(t_n|x_n, w, \beta) \right) p(w) \]

 \[= \prod_{n=1}^{N} \frac{\sqrt{\beta}}{\sqrt{2\pi}} \exp \left(-\frac{\beta}{2} (t_n - w^T \phi(x_n))^2 \right) \left(\frac{\alpha}{2\pi} \right)^{N/2} \exp \left(-\frac{\alpha}{2} w^T \phi \right) \]

- Take the log:
 \[-\ln p(w|t) = \frac{\beta}{2} \sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2 + \frac{\alpha}{2} w^T w + \text{const} \]

- L_2 regularization is maximum a posteriori (MAP) with a Gaussian prior.
 - $\lambda = \alpha / \beta$

Bayesian Linear Regression - Intuition

- Simple example $x, t \in \mathbb{R}$, $y(x, w) = w_0 + w_1 x$
- Start with Gaussian prior in parameter space
- Samples shown in data space
- Receive data points (blue circles in data space)
- Compute likelihood
- Posterior is prior (or prev. posterior) times likelihood

Predictive Distribution

- Single estimate of w (ML or MAP) doesn’t tell whole story
- We have a distribution over w, and can use it to make predictions
- Given a new value for x, we can compute a distribution over t:
 \[p(t|x, \alpha, \beta) = \int p(t, w|x, \alpha, \beta) dw \]

 \[p(t|x, \alpha, \beta) = \int p(t|w, \beta) \cdot p(w|x, \alpha, \beta) dw \]

 - i.e. For each value of w, let it make a prediction, multiply by its probability, sum over all w
 - For arbitrary models as the distributions, this integral may not be computationally tractable

- With the Gaussians we’ve used for these distributions, the predictive distribution will also be Gaussian
 - (math on convolutions of Gaussians)
- Green line is true (unobserved) curve, blue data points, red line is mean, pink one standard deviation
 - Uncertainty small around data points
 - Pink region shrinks with more data
Bayesian Model Selection

• So what do the Bayesians say about model selection?

 • Model selection is choosing model \(M \), e.g. degree of polynomial, type of basis function \(\phi \).

 • Don't select, just integrate

\[
p(t|x, D) = \sum_{i=1}^{I} p(t|x, M_i, D) p(M_i|D)
\]

• Average together the results of all models
• Could choose most likely model a posteriori \(p(M_i|D) \)

 • More efficient, approximation

Bayesian Model Selection

• How do we compute the posterior over models?

\[
p(M_i|D) \propto p(D|M_i)p(M_i)
\]

• Another likelihood + prior combination
• Likelihood:

\[
p(D|M_i) = \int p(D|w, M_i)p(w|M_i)dw
\]

Conclusion

• Readings: Ch. 3.1, 3.1.1-3.1.4, 3.3.1-3.3.2, 3.4

• Linear Models for Regression

 • Linear combination of (non-linear) basis functions

• Fitting parameters of regression model

 • Least squares

 • Maximum likelihood (can be = least squares)

• Controlling over-fitting

 • Regularization

 • Bayesian, use prior (can be = regularization)

• Model selection

 • Cross-validation (use held-out data)

 • Bayesian (use model evidence, likelihood)