Neural networks

Chapter 20
Outline

♦ Brains
♦ Neural networks
♦ Perceptrons
♦ Multilayer networks
♦ Applications of neural networks
10^{11} neurons of >20 types, 10^{14} synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential
McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

\[a_i \leftarrow g(in_i) = g(\sum_j W_{j,i}a_j) \]

\[a_0 = -1 \]

Input Links Input Function Activation Function Output Links
Activation functions

(a) is a step function or threshold function

(b) is a sigmoid function $1/(1 + e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location
Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented (with large enough network)

AND?

OR?

NOT?

MAJORITY?
Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented (with large enough network)

\[W_0 = 1.5 \]
\[W_1 = 1 \]
\[W_2 = 1 \]

\[W_2 = 1 \]
\[W_1 = 1 \]
\[W_0 = 0.5 \]

\[W_1 = -1 \]
\[W_0 = -0.5 \]
Network structures

Feed-forward networks:
- single-layer perceptrons
- multi-layer networks

Feed-forward networks implement functions, have no internal state

Recurrent networks:
- Hopfield networks have symmetric weights \((W_{i,j} = W_{j,i})\)
 \[g(x) = \text{sign}(x), \quad a_i = \pm 1; \text{ holographic associative memory} \]
- Boltzmann machines use stochastic activation functions,
 \(\approx\) MCMC in BNs
- recurrent neural nets have directed cycles with delays
 \(\Rightarrow\) have internal state (like flip-flops), can oscillate etc.
Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

\[a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4) \]
\[= g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2)) \]
Perceptrons

Input Units \(W_{j,i} \) Output Units

Perceptron output

Chapter 20 10
Expressiveness of perceptrons

Consider a perceptron with \(g = \text{step function} \) (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc.

Represents a \textit{linear separator} in input space:

\[
\sum_{j} W_j x_j > 0 \quad \text{or} \quad W \cdot x > 0
\]
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_w(x))^2$$
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_W(x))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = ?$$
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - hW(x))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j}(y - g(\sum_{j=0}^{n}W_jx_j))$$
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_\mathbf{W}(x))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} (y - g(\sum_{j=0}^{n} W_j x_j))$$

$$= -Err \times g'(in) \times x_j$$
Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

$$E = \frac{1}{2} Err^2 \equiv \frac{1}{2} (y - hW(x))^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} (y - g(\sum_{j=0}^{n} W_j x_j))$$

$$= -Err \times g'(in) \times x_j$$

Simple weight update rule:

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

E.g., +ve error \Rightarrow increase network output
\Rightarrow increase weights on +ve inputs, decrease on -ve inputs
Perceptron learning

\[W = \text{random initial values} \]

\[\text{for iter} = 1 \text{ to } T \]

\[\text{for } i = 1 \text{ to } N \text{ (all examples)} \]

\[\vec{x} = \text{input for example } i \]

\[y = \text{output for example } i \]

\[W_{old} = W \]

\[Err = y - g(W_{old} \cdot \vec{x}) \]

\[\text{for } j = 1 \text{ to } M \text{ (all weights)} \]

\[W_j = W_j + \alpha \cdot Err \cdot g'(W_{old} \cdot \vec{x}) \cdot x_j \]
Derivative of sigmoid $g(x)$ can be written in simple form:

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$g'(x) = ?$$
Perceptron learning contd.

Derivative of sigmoid \(g(x) \) can be written in simple form:

\[
g(x) = \frac{1}{1 + e^{-x}}
\]

\[
g'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = e^{-x}g(x)^2
\]

Also,

\[
g(x) = \frac{1}{1 + e^{-x}} \Rightarrow g(x) + e^{-x}g(x) = 1 \Rightarrow e^{-x} = \frac{1 - g(x)}{g(x)}
\]

So

\[
g'(x) = \frac{1 - g(x)}{g(x)}g(x)^2
\]

\[
= (1 - g(x))g(x)
\]
Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set
Layers are usually fully connected; numbers of hidden units typically chosen by hand.

Output units a_i

$W_{j,i}$

Hidden units a_j

$W_{k,j}$

Input units a_k
Expressiveness of MLPs

All continuous functions w/ 1 hidden layer, all functions w/ 2 hidden layers
Training a MLP

In general have n output nodes,

$$E \equiv \frac{1}{2} \sum_i Err_i^2,$$

where $Err_i = (y_i - a_i)$ and Σ_i runs over all nodes in the output layer.

Need to calculate

$$\frac{\partial E}{\partial W_{ij}}$$

for any W_{ij}.

Training a MLP cont.

Can approximate derivatives by:

\[f'(x) \approx \frac{f(x + h) - f(x)}{h} \]

\[\frac{\partial E}{\partial W_{ij}}(W) \approx \frac{E(W + (0, \ldots, h, \ldots, 0)) - E(W)}{h} \]

What would this entail for a network with \(n \) weights?
Can approximate derivatives by:

\[
 f'(x) \approx \frac{f(x + h) - f(x)}{h}
\]

\[
 \frac{\partial E}{\partial W_{ij}}(W) \approx \frac{E(W + (0, \ldots, h, \ldots, 0)) - E(W)}{h}
\]

What would this entail for a network with \(n \) weights?
- one iteration would take \(O(n^2) \) time

Complicated networks have tens of thousands of weights, \(O(n^2) \) time is intractable.

Back-propagation is a recursive method of calculating all of these derivatives in \(O(n) \) time.
Back-propagation learning

In general have \(n \) output nodes,

\[
E \equiv \frac{1}{2} \sum_i Err_i^2,
\]

where \(Err_i = (y_i - a_i) \) and \(\sum_i \) runs over all nodes in the output layer.

Output layer: same as for single-layer perceptron,

\[
W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i
\]

where \(\Delta_i = Err_i \times g'(in_i) \)

Hidden layers: back-propagate the error from the output layer:

\[
\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i .
\]

Update rule for weights in hidden layers:

\[
W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j .
\]
Back-propagation derivation

For a node i in the output layer:

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}}$$
Back-propagation derivation

For a node i in the output layer:

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$
Back-propagation derivation

For a node i in the output layer:

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$

$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}}$$
For a node i in the output layer:

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$

$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_k W_{k,i} a_j \right)$$
For a node i in the output layer:

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$

$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_k W_{k,i}a_j \right)$$

$$= -(y_i - a_i)g'(in_i)a_j = -a_j \Delta_i$$

where $\Delta_i = (y_i - a_i)g'(in_i)$
Back-propagation derivation: hidden layer

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = ?$$
“Reminder”: Chain rule for partial derivatives

For $f(x, y)$, with f differentiable wrt x and y, and x and y differentiable wrt u and v:

\[
\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}
\]

and

\[
\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\]
Back-propagation derivation: hidden layer

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial}{\partial W_{k,j}} E(a_{j_1}, a_{j_2}, \ldots, a_{j_m})$$

where $\{j_i\}$ are the indices of the nodes in the same layer as node j.
Back-propagation derivation: hidden layer

For a node \(j \) in a hidden layer:

\[
\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}
\]

where \(\sum_i \) runs over all other nodes \(i \) in the same layer as node \(j \).
Back-propagation derivation: hidden layer

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$

$$= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since} \quad \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j$$
Back-propagation derivation: hidden layer

For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$

$$= \frac{\partial E}{\partial a_j} \cdot \frac{\partial a_j}{\partial W_{k,j}}$$

since $\frac{\partial a_i}{\partial W_{k,j}} = 0$ for $i \neq j$

$$= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$
For a node j in a hidden layer:

\[
\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}
\]

\[
= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since} \quad \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j
\]

\[
= \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k
\]

\[
\frac{\partial E}{\partial a_j} = ?
\]
For a node j in a hidden layer:

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}$$

Since $\frac{\partial a_i}{\partial W_{k,j}} = 0$ for $i \neq j$

$$\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \cdot g'(in_j)a_k$$

$$\frac{\partial E}{\partial a_j} = \frac{\partial}{\partial a_j} E(a_{k_1}, a_{k_2}, \ldots, a_{k_m})$$

where $\{k_i\}$ are the indices of the nodes in the layer after node j.
Back-propagation derivation: hidden layer

For a node j in a hidden layer:

\[
\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}
\]

\[
= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \quad \text{since} \quad \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j
\]

\[
= \frac{\partial E}{\partial a_j} \cdot g'(in_j) a_k
\]

\[
\frac{\partial E}{\partial a_j} = \sum_k \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j}
\]

where \sum_k runs over all nodes k that node j connects to.
Back-propagation derivation: hidden layer

For a node \(j \) in a hidden layer:

\[
\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} + \sum_i \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial W_{k,j}}
\]

\[
= \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial W_{k,j}} \text{ since } \frac{\partial a_i}{\partial W_{k,j}} = 0 \text{ for } i \neq j
\]

\[
= \frac{\partial E}{\partial a_j} \cdot g'(i_{in_j}) a_k
\]

\[
\frac{\partial E}{\partial a_j} = \sum_k \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j}
\]

\[
= \sum_k \frac{\partial E}{\partial a_k} g'(i_{in_k}) W_{j,k}
\]
Back-propagation derivation: hidden layer

If we define

\[\Delta_j \equiv g'(in_j) \sum_k W_{j,k} \Delta_k \]

then

\[\frac{\partial E}{\partial W_{k,j}} = -\Delta_j a_k \]
for iter = 1 to T
 for e = 1 to N (all examples)
 \vec{x} = input for example e
 \vec{y} = output for example e
 run \vec{x} forward through network, computing all $\{a_i\}, \{in_i\}$ for all nodes i (in reverse order)
 compute $\Delta_i = \begin{cases}
 (y_i - a_i) \times g'(in_i) & \text{if } i \text{ is output node} \\
 g'(in_i) \sum_k W_{i,k} \Delta_k & \text{o.w.}
 \end{cases}$
 for all weights $W_{j,i}$
 $W_{j,i} = W_{j,i} + \alpha \times a_j \times \Delta_i$
Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Restaurant data:

Usual problems with slow convergence, local minima
Restaurant data:
Handwritten digit recognition

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error
Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.