Local search algorithms

Chapter 4, Sections 3–4
Outline

♦ Hill-climbing
♦ Simulated annealing
♦ Genetic algorithms (briefly)
♦ Local search in continuous spaces (very briefly)
Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space = set of “complete” configurations;
 find optimal configuration, e.g., TSP
 or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities
Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Example: \(n \)-queens

Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal.

Move a queen to reduce number of conflicts.

Almost always solves \(n \)-queens problems almost instantaneously for very large \(n \), e.g., \(n = 1 \text{ million} \).
Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
 neighbor, a node

current ← Make-Node(INITIAL-State[problem])
loop do
 neighbor ← a highest-valued successor of current
 if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
 current ← neighbor
end
Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima
Simulated annealing

Idea: escape local maxima by allowing some “bad” moves but gradually decrease their size and frequency

function Simulated-Annealing(\(problem, schedule\)) returns a solution state

inputs: \(problem\), a problem

\(schedule\), a mapping from time to “temperature”

local variables: \(current\), a node

\(next\), a node

\(T\), a “temperature” controlling prob. of downward steps

\(current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])\)

for \(t \leftarrow 1\) to \(\infty\) do

\(T \leftarrow \text{schedule}[t]\)

if \(T = 0\) then return \(current\)

\(next \leftarrow \text{a randomly selected successor of } current\)

\(\Delta E \leftarrow \text{Value}[next] - \text{Value}[current]\)

if \(\Delta E > 0\) then \(current \leftarrow next\)

else \(current \leftarrow next\) only with probability \(e^{\Delta E/T}\)
Effect of temperature

\[\exp(\frac{\Delta E}{T}) \]

- \(T = 100 \)
- \(T = 50 \)
- \(T = 10 \)
- \(T = 1 \)

\(\Delta E \):

- -100
- -80
- -60
- -40
- -20
- 0
Properties of simulated annealing

At fixed “temperature” T, state occupation probability reaches Boltzmann distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \implies always reach best state x^*

because

$$e^{\frac{E(x^*)}{kT}} / e^{\frac{E(x)}{kT}} = e^{\frac{E(x^*) - E(x)}{kT}} \gg 1 \text{ for small } T$$

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
Genetic algorithms

\[\text{stochastic local beam search} + \text{generate successors from pairs of states} \]
GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components
Continuous state spaces

Suppose we want to site one airport in Romania:

- 2-D state space defined by \((x, y)\)
- objective function \(f(x, y) = \sum_i (x_i - x)^2 + (y_i - y)^2\)
Continuous state spaces

Suppose we want to site one airport in Romania:

– 2-D state space defined by \((x, y)\)
– objective function \(f(x, y) = \sum_i (x_i - x)^2 + (y_i - y)^2\)

\[
\frac{\partial f}{\partial x} = -2\sum_i (x_i - x)
\]

\[
\frac{\partial f}{\partial y} = -2\sum_i (y_i - y)
\]
Continuous state spaces

Suppose we want to site three airports in Romania:
- 6-D state space defined by \((x_1, y_2), (x_2, y_2), (x_3, y_3)\)
- objective function \(f(x_1, y_2, x_2, y_2, x_3, y_3) = \)
 sum of squared distances from each city to nearest airport
Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by \((x_1, y_2), (x_2, y_2), (x_3, y_3)\)
– objective function \(f(x_1, y_2, x_2, y_2, x_3, y_3) = \)

 sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers \(\pm \delta\) change in each coordinate
Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by \((x_1, y_2), (x_2, y_2), (x_3, y_3)\)
– objective function \(f(x_1, y_2, x_2, y_2, x_3, y_3) = \)
 sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers \(\pm \delta\) change in each coordinate

Gradient methods compute

\[
\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right)
\]

to increase/reduce \(f\), e.g., by \(x \leftarrow x + \alpha \nabla f(x)\)
Suppose we want to site three airports in Romania:

- 6-D state space defined by $(x_1, y_2), (x_2, y_2), (x_3, y_3)$

- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$

 sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., **empirical gradient** considers $\pm \delta$ change in each coordinate

Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right)$$

to increase/reduce f, e.g., by $x \leftarrow x + \alpha \nabla f(x)$

Sometimes can solve for $\nabla f(x) = 0$ exactly (e.g., with one city). **Newton–Raphson** (1664, 1690) iterates $x \leftarrow x - H_f^{-1}(x)\nabla f(x)$ to solve $\nabla f(x) = 0$, where $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$