Red–black trees

CMPT 225
Objectives

- Define the red-black tree properties
- Describe and implement rotations
- Implement red-black tree insertion
 - We will skip red-black tree deletion
Items can be inserted in and removed from BSTs in $O(height)$ time.

So what is the height of a BST?

- If the tree is balanced: $O(\log n)$
- If the tree is very unbalanced: $O(n)$
Define a balanced binary tree as one where
- There is no path from the root to a leaf* that is more than twice as long as any other such path
- The height of such a tree is $O(\log n)$

Guaranteeing that a BST is balanced requires either
- A more complex structure (2-3 and 2-3-4 trees) or
- More complex insertion and deletion algorithms (red-black trees)

*definition of leaf on next slide
A red-black tree is a balanced BST
Each node has an extra colour field which is
- red or black
 - Usually represented as a boolean – isBlack
Nodes have an extra pointer to their parent
Imagine that empty nodes are added so that every real node has two children
- They are imaginary nodes so are not allocated space
- The imaginary nodes are always coloured black
Red-black Tree Properties

1. Every node is either red or black
2. Every leaf is black
 - This refers to the imaginary leaves
 - i.e. every null child of a node is considered to be a black leaf
3. If a node is red both its children must be black
4. Every path from a node to a leaf contains the same number of black nodes
5. The root is black (mainly for convenience)
Red-black Tree Intuition

- Perfect trees are perfectly balanced
 - But they are inflexible, can only store 1, 3, 7, ... nodes
- “Black” nodes form a perfect tree
- “Red” nodes allow flexibility

- Draw some pictures
Red-black Tree Height

- The black height of a node, $bh(v)$, is the number of black nodes on a path from v to a leaf
 - Without counting v itself
 - Because of property 4 every path from a node to a leaf contains the same number of black nodes
- The height of a node, $h(v)$, is the number of nodes on the longest path from v to a leaf
 - Without counting v itself
 - From property 3 a red node’s children must be black
 - So $h(v) \leq 2(bh(v))$
Balanced Trees

- It can be shown that a tree with the red-black structure is balanced
 - A balanced tree has no path from the root to a leaf that is more than twice as long as any other such path
- Assume that a tree has n internal nodes
 - An internal node is a non-leaf node, and the leaf nodes are imaginary nodes
 - A red-black tree has $\geq 2^{bh} - 1$ internal (real) nodes
 - Can be proven by induction (e.g. Algorithms, Cormen et al.)
Claim: a red-black tree has height, $h \leq 2 \times \log(n+1)$

- $n \geq 2^{bh} - 1$ (see above)
- $bh \geq h / 2$ (red nodes must have black children)
- $n \geq 2^{h/2} - 1$ (replace bh with h)
- $\log(n + 1) \geq h / 2$ (add 1, \log_2 of both sides)
- $h \leq 2 \times \log(n + 1)$ (multiply both sides by 2)
Tree Rotations
Rotations

- An item must be inserted into a **red-black** tree at the correct position
- The shape of a tree is determined by
 - The values of the items inserted into the tree
 - The order in which those values are inserted
- This suggests that there is more than one tree (shape) that can contain the same values
- A tree’s shape can be altered by *rotation* while still preserving the *bst* property
 - Note: only applies to *bst* with no duplicate keys!
Left Rotation

Left rotate(x)
Right Rotation

Right rotate(z)
Left Rotation Example

Left rotation of 32, call the node x

Assign a pointer to x's R child
Left Rotation Example

- Left rotation of 32, call the node x
- Assign a pointer to x's R child
- Make temp’s L child x’s R child
- Detach temp’s L child

```
  Make temp's L child x's R child
  Assign a pointer to x's R child
  Detach temp's L child
```

Diagram:
- Node 32
- Left rotation of 32, call the node x
- Assign a pointer to x's R child
- Make temp’s L child x’s R child
- Detach temp’s L child

```
Left rotation of 32, call the node x
Assign a pointer to x's R child
Make temp’s L child x’s R child
Detach temp’s L child
```
Left Rotation Example

- Left rotation of 32, call the node x
- Assign a pointer to x's R child
- Make temp’s L child x’s R child
- Detach temp’s L child
- Make x temp’s L child
- Make temp x's parent's child

![Diagram of a binary search tree with a left rotation example]
Left rotation of 32, call the node x
Right Rotation Example

Right rotation of 47, call the node x

Assign a pointer to x's L child
Right Rotation Example

- Right rotation of 47, call the node x
- Assign a pointer to x’s L child
- Make temp’s R child x’s L child
- Detach temp’s R child

Diagram:
- Right rotation of 47, call the node x
- Assign a pointer to x’s L child
- Make temp’s R child x’s L child
- Detach temp’s R child
Right rotation of 47, call the node x

Assign a pointer to x’s L child

Make temp’s R child x’s L child

Detach temp’s R child

Make x temp’s L child
Right Rotation Example

Right rotation of 47, call the node x

Assign a pointer to x's L child
Make temp’s R child x’s L child
Detach temp’s R child
Make x temp’s L child
Make temp the new root

Diagram:
- Node 32 as the root
- Node 47 is detached and assigned to the L child of 13
- Node 7 becomes the new root
- Nodes 29, 40, 37, and 81 are maintained in their original positions.
Red-black Tree Insertion

- Insert as for a binary search tree
 - Make the new node red
Insertion Example

Insert 65
Red-black Tree Insertion

- Insert as for a binary search tree
 - Make the new node red

- What can go wrong? (see slide 6)
 - The only property that can be violated is that both a red node’s children are black (its parent may be red)

- So, after inserting, fix the tree by re-colouring nodes and performing rotations
Fixing the Red-black Tree

- The fixing of the tree remedies the problem of two consecutive red nodes
 - There are a number of cases (that’s what is next)
- It is iterative (or recursive) and pushes this problem one step up the tree at each step
 - I.e. if the consecutive red nodes are at level d, at the next step they are at $d-1$
 - This is why it turns out to be $O(\log n)$
 - We won’t go into the analysis
Need to fix tree if new node’s parent is red
Case I for fixing:
If parent and uncle are both red
 - Then colour them black
 - And colour the grandparent red
 - It must have been black beforehand, why?
Insertion Example

Insert 65
Insert 82
Insertion Example

Insert 65
Insert 82
Insertion Example

Insert 65
Insert 82

change nodes’ colours
Red-black Tree Insertion II

- Need to fix tree if new node’s parent is red
- Case II for fixing:
 - If parent is red but uncle is black
 - Need to do some tree rotations to fix it
Insertion Example

- Insert 65
- Insert 82
- Insert 87
Insertion Example

Insert 65
Insert 82
Insert 87
Insertion Example

- Insert 65
- Insert 82
- Insert 87
Insertion Example

- Insert 65
- Insert 82
- Insert 87
Insertion Example

- Insert 65
- Insert 82
- Insert 87

change nodes’ colours
Insertion Example

Insert 65
Insert 82
Insert 87
Why were these rotations performed?
- First rotation made the two red nodes left children of their parents
 - This rotation isn’t performed if this is already the case
 - Note that grandparent must be a black node
- Second rotation and subsequent recolouring fixes the tree
Insertion Summary

- Full details require a few cases
 - See link to example code snippets at end
 - Understand the application of tree rotations
Summary
Red-black trees are *balanced* binary search trees

- Augment each node with a *colour*
 - Maintaining relationships between node colours maintains balance of tree

- Important operation to understand: *rotation*
 - Modify tree but keep binary search tree property (ordering of nodes)
Readings

- For implementation details, please see: http://en.wikipedia.org/wiki/Red-black_tree

(see “Operations”)

October 2004 John Edgar