
CMPT 407/710 - Complexity Theory: Lecture 20

Valentine Kabanets

July 27, 2017

1 Exponential-Time Hypothesis and Polytime Prob-

lems

Impagliazzo and Paturi’s Exponential-Time Hypothesis (ETH) says that k-SAT requires
time 2Ω(n). More formally, for every k, there exists a δ = δ(k) > 0 such that k-SAT 6∈
BPTIME(2δn).

While already a strengthening of the assumption that SAT 6∈ BPP, ETH can be further
strengthened to the following Strong ETH (SETH), which says that k-SAT requires time
2n(1−o(1)). More formally, for δ = δ(k) as above, we have that δ(k)→ 1 as k →∞.

1.1 Orthogonal Vectors (OV)

Consider the following problem: Given two sets of d-dimensional vectors A,B ⊆ {0, 1}d,
where |A| = |B| = n, decide if there is a pair of vectors a ∈ A and b ∈ B such that 〈a, b〉 = 0
(i.e., a pair of orthogonal vectors). Think of d = O(log n).

The naive algorithm for this problem takes time O(n2 · poly log n) = Õ(n2): Simply try
all n2 pairs of vectors, and see if any pair are orthogonal.

OV Conjecture: No algorithm solves OV in time less than n2−ε, for some constant ε > 0.

Theorem 1 (R. Williams). SETH ⇒ OV Conjecture.

Proof. We prove the contrapositive: a better than n2 algorithm for OV will imply a better
than 2n algorithm for k-SAT.

Given an instance of k-SAT: φ(x1, . . . , xn) = C1 ∧C2 ∧ · · · ∧Cm, with n variables and m
clauses (of size at most k each), construct the following two sets of m-dimensional vectors A
and B:

Enumerate all partial truth assignments to x1, . . . , xn/2 (assume n is even, wlog),
and for each such assignment z ∈ {0, 1}n/2, place into set A a vector Vz =
(v1, . . . , vm), where vi = 0 if clause Ci is satisfied by the partial assignment z to
the variables x1, . . . , xn/2, and is 1 otherwise.

1

Similarly, enumerate all partial truth assignments to xn/2+1, . . . , xn, and for each
such assignment z ∈ {0, 1}n/2, place into set B a vector Vz = (v1, . . . , vm),
where vi = 0 if clause Ci is satisfied by the partial assignment z to the vari-
ables xn/2+1, . . . , xn, and is 1 otherwise.

It is easy to see that φ is satisfiable iff there are vectors a ∈ A and b ∈ B such that
〈a, b〉 = 0.

Thus to solve k-SAT, we construct an instance of OV as above, in time O(2n/2), where
|A| = |B| = N := 2n/2. Then we apply a hypothetical Õ(N2−ε)-time algorithm for OV to
decide if φ is satisfiable. The overall time is at most Õ(N2−ε) = Õ(2n(2−ε)/2) = Õ(2n(1−ε′)), for
a constant ε′ = ε/2 > 0. The latter runtime is true for any k-SAT, which violates SETH.

Similar results are known for many other problems in P. That is, assuming SETH, we
know exact polynomial-time complexity for problems like Edit Distance, All-Pairs Shortest
Paths, etc. The upshot is: even if you are working on algorithms for “simple” problems like
Edit Distance, and trying to beat the well-known n2-time Dynamic Programming algorithm,
you are also trying to get a better than brute force algorithm for SAT! Maybe that’s a good
way to get a faster SAT algorithm! Or, maybe it’s an indication that the Edit Distance
algorithm can’t be improved below quadratic time. Either way, you can’t escape working on
SAT algorithms, even if you are an Algorithms (rather than Complexity) person, interested
in designing better polytime algorithms for natural problems in P!

2 Barriers

Why can’t we resolve the “P vs. NP” question? One of the basic answers is: We need “new
techniques”! But what are the old techniques and why are they not useful for resolving the
big open questions such as the “P vs. NP”?

There are several formal answers.

1. Relativization: “black-box” (relativizing) techniques alone are not enough to resolve
“P vs. NP” [Baker, Gill, Solovay’1975].

2. Algebrization: “arithmetization of propositional formulas” is not enough to resolve “P
vs. NP” [Aaronson, Wigderson’08 and Impagliazzo, Kabanets, Kolokolova’09]

3. Natural proofs: “natural arguments” are not enough to prove superpolynomial cir-
cuit lower bounds for those circuit classes that can compute secure PseudoRandom
Generators [Razborov, Rudich]

We present more details next.

2

2.1 Relativizing techniques

What are relativizing techniques? Recall our definition of oracle Turing machines. These
are TMs with an extra tape, oracle tape, where they can write a query (a string), and in the
next step of computation, they get back the answer whether that string is in the oracle or
not. When we choose a particular oracle A (which, recall, is just a language A ⊆ {0, 1}∗),
our oracle machine will get its oracle queries answered according to that language A. This
oracle TM is denoted MA to stress that it has oracle access to the oracle A.

If you recall proofs such as P ⊆ NP or EXP 6⊆ P, you will convince yourself that the same
proofs also show that, relative to any oracle A, PA ⊆ NPA and EXPA 6⊆ PA. In general,
we say that a proof technique/argument is relativizing if it remains valid relative to every
oracle A. That is, if we prove some statement (e.g., EXP 6⊆ P) using relativizing arguments,
then our proof can be modified to also show the same statement relative to any given oracle
A; the modification is syntactic – add oracle access to A everywhere in the proof where you
talk about TMs.

The two basic techniques, simulation (which means that there is a TM that can simu-
late any other TM with not too much overhead) and diagonalization (which means we can
construct a language not accepted by any TM of certain type), are examples of relativizing
techniques!

Such techniques are “black-box” in the sense that we are treating the TM as a “black-
box”: Given a TM M , we don’t open it up, but simply run (simulate) it on a given input x.
If that TM were an oracle TM with oracle A, we would still just run it on a given input x.
If our proof methods are based only on the idea “just run it” for Turing machines (i.e., be
completely black-box), then, as Baker, Gill, Solovay argued, we will never resolve the “P vs.
NP” question!

More formally, they proved the following:

Theorem 2 (Baker, Gill, Solovay). There are oracles A and B such that PA = NPA and
PB 6= NPB.

As a consequence, there cannot be a relativizing proof of P = NP, or a relativizing proof
of P 6= NP. The reason is that such a proof would remain valid relative to any oracle (by
the definition of a relativizing proof), but there are oracles relative to which “P vs. NP” has
opposite answers.

Proof of Theorem 2. Take A = TQBF , the PSPACE-complete language. We have that
PA ⊆ NPA (for trivial reasons), then NPA ⊆ NPSPACE (as we can answer A-queries ourselves
in PSPACE), then by Savitch’s theorem we have NPSPACE = PSPACE, and finally, by the
definition of PSPACE-completeness, we get PSPACE ⊆ PA. Thus, we got

PA ⊆ NPA ⊆ NPSPACE = PSPACE ⊆ PA.

This implies that all inclusions are in fact equalities, and so in particular PA = NPA.

3

Now we will construct the oracle B. First, given any oracle B (which will be determined
later), define the unary language

UB = {1n | ∃x ∈ B, |x| = n}.

Observe that UB ∈ NPB (no matter what B is). Indeed, given 1n, our oracle NTM will
nondeterministically guess a string x of length n, and check if x ∈ B (by an oracle query),
accepting if the oracle query is answered positively.

Next we will define B in such a way that UB 6∈ PB. We construct B in stages. At first,
we set B = ∅. Before stage i (for i > 0), we will have made decisions on which strings to
put in B and which to leave out for a finite number of strings. Let ` be the length of the
longest string about which we’ve already made our decision. Set n = ` + 1. In stage i, we
will extend our set B so as to fool the ith TM Mi, where we have an enumeration of all TMs
running in time at most 2n/10 on inputs of size n.

We will run MB
i (1n) on the partially defined oracle B. When Mi asks about a string for

which we’ve already made the decision to put it or not put it in B, we answer according to
our previous decision. If Mi asks about a new string, we answer negatively, and make this
decision permanent.

After 2n/10 steps, the machine Mi will halt with Yes or No as its answer. If it answers
Yes, then we decide not to put into B any string of length n. If Mi answers No, we pick
some n-bit string that was not asked about by Mi during its simulation (such a string exists
since Mi could only ask about 2n/10 strings, whereas there are 2n strings of length n in total)
and place that string into B. In both cases, the new partially defined set B is such that
MB

i (1n) makes a mistake when deciding UB (because we change the oracle B for strings that
are never queried by MB

i (1n), and so the answer of MB
i (1n) remain the same).

It follows that the final set B (obtained after infinitely many stages) is such that no
2n/10-time TM MB is correct for the language UB, and hence, UB 6∈ PB.

4

