CMPT 225
External Storage
Part 2 – B-Trees
Last Lecture

• Disk-bound data
 ◦ Investigated various ways of managing data too large to fit in memory
 ◦ Performed operations on such data
 • e.g.: searching using index files and data files
Learning Outcomes

At the end of this unit, a student will be able to:

- External Storage:
 - Perform operations on data too large to fit in memory
 - e.g.: searching using index files and data files

- Data Organization
 - Define B-Trees and B+ Trees
 - Demonstrate the functioning of their operations
Today’s Menu

- Define B-Trees
- Demonstrate the functioning of their operations
B-Tree

- **Definition:**
 - A B-Tree is a “external” data collection that organizes its blocks (B) into an m-way search tree, and in addition
 - the root of a B-Tree has at least 2 children (unless it is a leaf node)
 - and its other non-leaf nodes have at least \(\lceil m / 2 \rceil \) children

- Can be used to organize index files
m-way search tree?

- Remember n-ary tree
 - 2-ary or binary tree / binary search tree
 - 3-ary tree
 - 4-ary tree

- Generalized into
 - m-way tree / m-way search tree
 - m -> degree of tree
conceptual representation of

Example: m-way search tree (m=4)

of levels = 3

- each non-leaf has at most 4 subtrees/children
 & 4-1=3 key values in ascending order
M-way Search Tree

Definition:

- An m-way search tree T is an m-way tree such that
 - T is either empty
 - or each non-leaf node of T has at most m children (subtrees) $T_0, T_1, \ldots, T_{m-1}$
 and $m-1$ search key values in ascending order:
 \[K_1 < K_2 < \ldots < K_{m-1} \]
 - for every search key value V in subtree T_i:
 (rules of construction)
 \[
 \begin{align*}
 & V < K_1, \quad i = 0 \\
 & K_i < V < K_{i+1}, \quad 1 \leq i \leq m-2 \\
 & V > K_{m-1}, \quad i = m-1
 \end{align*}
 \]
 - every subtree T_i is also an m-way search tree
B-Tree

- A B-Tree is built from the leaves up, rather than from the root down, and so all leaf blocks in a B-Tree are on the same level.

 - Hence, B-Trees are balanced m-way search trees, just as AVL trees are balanced binary search trees.
B-Tree Structure

- Each block contains a tree node
- In a node:
 - $m - 1$ index records:
 - `<search key, data file block #>`
 - m index file block #
 - containing root of each of its subtrees/children
B-Tree Example

B-Tree of order 5 (m = 5) in which every node (except the root and the leaves) has
• at least \(\lceil 5 / 2 \rceil = 3 \) children, and
• at most 5 children
B-Treew Search Algorithm

1. Access (read into memory) block from index file containing the root
2. Linearly search block for target search key
 - If found: determine the matching data file block # and access that block from data file
 • If more than one data records per block, perform linear search to find target data record
 - If not found & block is leaf -> not there - done!
3. Otherwise, determine which index file block # to access next based on rules of construction of m-way search tree
4. Access block from index file and repeat above Steps 2 to 4
Example: B-Tree (m = 4)
Constructing a B-Tree

- Let’s construct the B-Tree shown on the previous slide where $m = 4$

- To do so, we shall insert index records $<$search key, data file block #> containing the following search keys: 12, 1, 7, 23, 20, 6, 18, 5, 4, 22, 10, 15, 8, 3, 9, 17, 11, 16 (number of elements: 18)

 Note: for space reason, we shall only insert the search key part of the index record

- Remember:
 - Index records $<$search key, data file block #> are inserted in a block in ascending sort order of search key value
 - In a B-Tree, 1 block contains 1 node
B-Tree Insertion

Let’s begin by inserting element with search key 12:

- **Data file**: Insert element (i.e., data record) into block \(b \) in data file
- **Index file**: Since the B-Tree is empty, we create the first block i.e., the root, by inserting index record \(<12, b>\) into the block and inserting the block into index file

![Drawing of this first block: 12]

\[
12
\]

\[
1 \ 2 \ 3 \ 4 \ 5
\]
B-Tree Insertion

• Insert 1:
 ◦ Compare each search key found in index record already in the root with the search key 1 and since 1 < 12, move 12 over, then insert the index record <1, data file block #> into it.

• Insert 7:
 ◦ Compare each search key found in index records already in the root with the search key 7 and since 1 < 7 < 12, move 12 over, then insert the index record <7, data file block #> into the space made available.
B-Tree Insertion

- Insert 23:
 - Since the root is full, we split it as follows:
 - create a sibling and move the keys > middle search key (i.e., 7) into it
 - create a new block (parent) and move the middle search key (i.e., 7) into it
 - link the subtrees to the newly formed parent block using index file block #
B-Tree Insertion

Insert 23 (cont’d):

- Starting at the root, since 7 < 23, 23 is inserted into its right subtree
- Considering the root of its right subtree, since its only key 12 < 23, insert the index record $<23, \text{data file block} \#>$ after 12

![B-Tree diagram](image)
B-Tree Insertion

- Insert 20:
 - Starting at the root, since 7 < 20, 20 is inserted into its right subtree
 - Moving on to the root of its right subtree, since 12 < 20 < 23, move 23 over, then insert the index record <20, data file block #> into the space made available

```
  7
   /   /
  12  20  23
     /     /     /
    /     /     /
```
B-Tree Insertion

- Let’s pick up the pace now…

- Insert 6, i.e., insert the index record \(<6, \text{data file block} \#\>\)

- Insert 18, i.e., insert the index record \(<18, \text{data file block} \#\>\), but the destination block is full
B-Tree Insertion

- Insert 18:
 - Since the destination block is full, we split it as follows:
 - create a sibling and move the keys > middle search key (i.e., 20) into it
 - create a new block (parent) and move the middle search key (i.e., 20) into it
 - link the newly formed rightmost subtree to the parent block using index file block #
 - insert 18

```
7  20
  /   \
1  6  12  18
    /   /  \
   /  /    \
  /  /      \
 /  /        \
12 18
23
```
B-Tree Insertion

- Insert 5, i.e., insert the index record <5, data file block #>
B-Tree Insertion

- **Insert 4:**
 - first split:

 1 4

 6

 12 18

 23

- **insert the index record **<4, data file block #>**
B-Tree Insertion

- Insert 22:
B-Tree Insertion

- Insert 10:
B-Tree Insertion

- Insert 15:
B-Tree Insertion

• Insert 8, 3, 9 and 17:
B-Tree Insertion

- Insert 11:
B-Tree Insertion

- Insert 16:
Assuming the entire index file (B-Tree) cannot be loaded into main memory

In analyzing the search time efficiency, we need to know the height of a B-Tree accommodating 36M records

Answer:

- Assuming we are using a B-Tree of order 4 to store our 36M search keys (and matching block #’s) and that each block of the B-Tree is filled (i.e., each block contains 3 index records) and that every level of our B-Tree is filled, then our B-Tree has:

\[(4^H – 1) \text{ blocks, where } H \text{ is the height (the number of levels)}\]
Search - Take #4 - B-Tree

- \(4^H - 1 = 12,000,000 \) blocks
- \(\log_4 4^H = \log_4 12,000,001 \)
- \(H = \log_4 12,000,001 \)
- \(H = \frac{\log_2 (12,000,001)}{\log_2 4} \)
- \(H = \)

- In this example, we could increase the value of \(m \), which would increase the number of index records in a block, which would decrease the height of our B-Tree, hence further reducing the number of disk accesses performed during a search of our data collection containing 36M Canadians
Advantage of B-Trees

• Good external data collection for index file and hence for disk-bound data
 ◦ When \(n \) is large, \(m \) can be set to a large number, which keeps the height of the B-Tree short
 ◦ Since the number of disk accesses is proportional to the height of a tree (\# of levels), then short height translates into small number of disk accesses, and hence good time efficiency for search/insert/remove operations

• In practice, commercial databases use specialized versions of these search trees where \(m \) is of the order of 100
Summary

- Defined B-Trees
- Demonstrated the functioning of their operations
Next Lecture

- B+ Trees