CMPT 120: Introduction to Computing Science and Programming 1

Algorithms, Flowcharts, and Pseudocodes

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.
One-Stop Access To Course Information

- **Course website**: One-stop access to all course information.

 http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

 - Course Outline
 - Exam Schedule
 - Python Info
 - **CourSys/Canvas** link
 - Learning Outcomes
 - Office Hours
 - Textbook links
 - and more...
 - Grading Scheme
 - Lab/Tutorial Info
 - Assignments

- **Canvas**: Discussions forum.

 https://canvas.sfu.ca/courses/39187

- **CourSys**: For assignments submission, and grades.

 www.coursys.sfu.ca
Some Reminders

• Get familiar with the course Website.
 ▫ [link](http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html)
 ▫ Minor updates may occur during first week.

• Get fob to access LABS (start next week!)
 ▫ If you don’t have it already, get a new fob from Discovery Park 1.
Additional Resources / Online References

• There are several online references that are as important as the texts. (Links provided on the course web site.)

• These resources are very important to your success in this course. They aren’t meant to be read from beginning to end like the readings in the textbook.

• You should use them to get an overall picture of the topic and as references as you do the assignments.
How to Learn in This Course?

A: Attend Lectures & Labs
R: Read / review Textbook/Slides/Notes
R: Reflect and ask Questions
O: Organize – your learning activities on weekly basis,
 and finally...
Today’s Topics

1. Continue with Algorithms
2. Flowchart

https://etherpad.canvas.sfu.ca/p/i-8z1KelGBGco3wHfCPSJrPyv8VoMoIMe2laPnvFKp
Today’s Topics

Continue with Algorithms

Liaqat Ali, Summer 2018.
Algorithm: Find the Smallest of Three Numbers

Step 1: Start
Step 2: Declare variables \(n_1 \), \(n_2 \), and \(n_3 \).
Step 3: Read variables \(n_1 \), \(n_2 \), and \(n_3 \).
Step 4: If \(n_1 < n_2 \) then:
Step 5: If \(n_1 < n_3 \) then print \(n_1 \) is the smallest number.
Step 6: else print \(n_3 \) is the smallest number.
Step 7: else
Step 5: If \(n_2 < n_3 \) then print \(n_2 \) is the smallest number.
Step 6: else print \(n_3 \) is the smallest number.
Step 9: End

Liaqat Ali, Summer 2018.
Let’s Write Another Algorithm: Even or Odd Number

Write an algorithm to print whether the user entered an even or an odd number.

Step 1: Start

Step 2:

Step 3:

Step 4:

Step 4: If

Step 5: else

Step 6: End
Today’s Topics

Flowcharts

Liaqat Ali, Summer 2018.
Flowcharts

- Flowchart is a graphical representation of an algorithm.
Flowcharts: Geometric Shapes and Their Meanings

1. Terminal: To mark Start or End a flowchart.
2. I/O: To show an Input or Output operation:
 ▫ Read data from keyboard/user, or print/display on screen.
3. To show a Process:
 ▫ Compute average, computer salary, add numbers.
4. To show a Decision point, or alternatives:
 ▫ If marks > 50, then "Pass", Else "Fail".
5. Flowline: To connect two steps / shapes / processes.

Note: See textbook/online resources for more symbols.
Draw a Flowchart for the Adding Two Numbers Algorithm

Step 1: Start
Step 2: Declare a variable N1.
Step 3: Declare a variable N2.
Step 4: Declare a variable S to store the sum.
Step 5: Get the value of N1 from the user.
Step 6: Get the value of N2 from the user.
Step 7: Add N1 and N2 and assign the result to S.
Step 8: Display the sum S.
Step 9: End
Modify Algorithm: Add, If Sum < 50 Then Fail Else Pass

Step 1: Start
Step 2: Declare a variable N1.
Step 3: Declare a variable N2.
Step 4: Declare a variable S to store the sum.
Step 5: Get the value of N1 from the user.
Step 6: Get the value of N2 from the user.
Step 7: Add N1 and N2 and assign the result to S.
Step 8: Display the sum S.
Step 9:

Step 10: End

Liaqat Ali, Summer 2018.
Modify the Flowchart
Draw Flowchart: Find the Smaller of Two Numbers Algorithm

Write an algorithm to find the smaller of two numbers entered by a user.

Step 1: Start

Step 2: Declare a variable num1 to store the first number.

Step 3: Declare a variable num2 to store the second number.

Step 4: Get the value of num1 from the user.

Step 5: Get the value of num2 from the user.

Step 6: If num1 < num2 then print num1 is smaller.

Step 7: If num2 < num1 then print num2 is smaller.

Step 8: If num1 = num2 then print “Both the numbers are equal.”

Step 9: End

Liaqat Ali, Summer 2018.
Flowchart: Smaller of Two Numbers
Step 1: Start

Step 2: Declare variables \(n_1, n_2, \) and \(n_3. \)

Step 3: Read variables \(n_1, n_2, \) and \(n_3. \)

Step 4: If \(n_1 < n_2 \) then:

Step 5: If \(n_1 < n_3 \) then print \(n_1 \) is the smallest number.

Step 6: else print \(n_3 \) is the smallest number.

Step 7: else

Step 5: If \(n_2 < n_3 \) then print \(n_2 \) is the smallest number.

Step 6: else print \(n_3 \) is the smallest number.

Step 9: End

Liaqat Ali, Summer 2018.
Questions?