One-Stop Access To Course Information

- **Course website:** One-stop access to all course information.

 http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline
- Exam Schedule
- Python Info
- CourSys/Canvas link
- Learning Outcomes
- Office Hours
- Textbook links
- and more...
- Grading Scheme
- Lab/Tutorial Info
- Assignments

- **Canvas:** Discussions forum.
 https://canvas.sfu.ca/courses/39187

- **CourSys:** For assignments submission, and grades.
 www.coursys.sfu.ca
Some Reminders

• Get familiar with the course Website.
 ▫ http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
 ▫ Minor updates may occur during first week.

• Get fob to access LABS (start next week!)
 ▫ If you don’t have it already, get a new fob from Discovery Park 1.
Additional Resources / Online References

• There are several online references that are **as important as the texts**. (Links provided on the course web site.)

• These resources are **very important to your success** in this course. They aren’t meant to be read from beginning to end like the readings in the textbook.

• You should use them to **get an overall picture of the topic** and as references as you do the assignments.
How to Learn in This Course?

A - Attend Lectures & Labs
R - Read / review Textbook/Slides/Notes
R - Reflect and ask Questions
O - Organize – your learning activities on weekly basis,
and finally...
W - Write Code, Write Code, and Write Code.

Liaqat Ali, Summer 2018.
Today’s Topics

1. Continue with Algorithms
2. Flowchart

https://etherpad.canvas.sfu.ca/p/i-8z1KejGBGco3wHfCPSJrPyv8VoMoIMe2IaPnvFKp

Liaqat Ali, Summer 2018.
Today’s Topics

Continue with Algorithms

Liaqat Ali, Summer 2018.
Algorithm: Find the Smallest of Three Numbers

Step 1: Start
Step 2: Declare variables n1, n2, and n3.
Step 3: Read variables n1, n2, and n3.
Step 4: If n1 < n2 then:
Step 5: If n1 < n3 then print n1 is the smallest number.
Step 6: else print n3 is the smallest number.
Step 7: else
Step 5: If n2 < n3 then print n2 is the smallest number.
Step 6: else print n3 is the smallest number.
Step 9: End
Let’s Write Another Algorithm: Even or Odd Number

Write an algorithm to print whether the user entered an even or an odd number.

Step 1: Start
Step 2: Declare variables n and r.
Step 3: Read the value of variable n.
Step 4: Compute integer remainder of n divided by 2 and store it in r.
Step 4: If r = 0 then print n is an even number.
Step 5: else print n is an odd number.
Step 6: End
Today’s Topics

Flowcharts

Liaqat Ali, Summer 2018.
Flowcharts

• Flowchart is a **graphical representation** of an algorithm.
 - Flowchart is same as algorithm, except that in flowcharts we show the steps of an algorithm using geometric shapes like circles, rectangle, lines, diamonds etc.
Flowcharts: Geometric Shapes and Their Meanings

1. Terminal: To mark **Start** or **End** a flowchart.

2. I/O: To show an **Input** or **Output** operation:
 - Read data from keyboard/user, or print/display on screen.

3. To show a **Process**:
 - Compute average, computer salary, add numbers.

4. To show a **Decision** point, or alternatives:
 - If marks > 50, **then** “Pass”, **Else** “Fail”.

5. Flowline: To **connect** two steps / shapes / processes.

Note: See textbook/online resources for more symbols.
Step 1: Start
Step 2: Declare a variable N1.
Step 3: Declare a variable N2.
Step 4: Declare a variable S to store the sum.
Step 5: Get the value of N1 from the user.
Step 6: Get the value of N2 from the user.
Step 7: Add N1 and N2 and assign the result to S.
Step 8: Display the sum S.
Step 9: End
Modify Algorithm: Add, If Sum < 50 Then Fail Else Pass

Step 1: Start

Step 2: Declare a variable N1.

Step 3: Declare a variable N2.

Step 4: Declare a variable S to store the sum.

Step 5: Get the value of N1 from the user.

Step 6: Get the value of N2 from the user.

Step 7: Add N1 and N2 and assign the result to S.

Step 8: Display the sum S.

Step 9: If S < 50 then display “Fail”

Else display “Pass”

Step 10: End
Modify the Flowchart

START

Declare N1, N2, S

Read N1, N2

S = N1 + N2

Display S

A

S < 50

Yes

Print “Fail”

No

Print “Pass”

END

Note: circle / oval shape is a same page connector.
Write an algorithm to find the smaller of two numbers entered by a user.

Step 1: Start

Step 2: Declare a variable num1 to store the first number.

Step 3: Declare a variable num2 to store the second number.

Step 4: Get the value of num1 from the user.

Step 5: Get the value of num2 from the user.

Step 6: If num1 < num2 then print num1 is smaller.

Step 7: If num2 < num1 then print num2 is smaller.

Step 8: If num1 = num2 then print “Both the numbers are equal.”

Step 9: End
Flowchart: Smaller of Two Numbers

START
Declare N1, N2
Read N1, N2

A

N1 < N2

No
Print N2 is smaller
Yes
Print N1 is smaller

END
Draw Flowchart: Home Work (Solution In Next Class)

Step 1: Start

Step 2: Declare variables n_1, n_2, and n_3.

Step 3: Read variables n_1, n_2, and n_3.

Step 4: If $n_1 < n_2$ then:

Step 5: If $n_1 < n_3$ then print n_1 is the smallest number.

Step 6: else print n_3 is the smallest number.

Step 7: else

Step 5: If $n_2 < n_3$ then print n_2 is the smallest number.

Step 6: else print n_3 is the smallest number.

Step 9: End

Liaqat Ali, Summer 2018.
Questions?
Course Topics

1. General introduction
2. **Algorithms, flow charts and pseudocode**
3. Procedural programming in Python
4. Data types and control structures
5. Fundamental algorithms
6. Binary encodings
7. Basics of computability and complexity
8. Basics of Recursion
9. Subject to time availability:
 - Basics of Data File management

Liaqat Ali, Summer 2018.